Match 5 Round 1 Algebra I: Fractions and Exponents

- 1.) _____1.625
- 2.) 5
- \underline{b}^{α} 3.) \underline{Q}^{α}

1. Express as a decimal, correct to three decimal places.

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + 1}}}$$

$$\begin{array}{c} (55)^3 (121)^4 \\ \text{2) Simplify: } (1331)^3 (275)^2 \end{array}$$

3.) If x - 3y = -2, express the following as a single fraction without negative exponents.

$$\frac{(a^{x}b^{3y})^{4}((a^{3x}+b^{2y})^{2}-b^{2y}(2a^{3x}+b^{2y}))(a^{-2x}b^{-3y})^{-4}}{(a^{3x})^{5}(ab^{7})^{3y}(a^{2}b)^{x}}$$

Match 5 Round 2

Algebra I: Fractional

Expressions and

Equations

Assume no values of x make any denominator equal to zero.

2.) 3, 33

3.) ______

1). Multiply and simplify:
$$\frac{x^2 - 18x + 80}{x^2 - 17x + 72} * \frac{9x - x^2}{x^2 - 100}$$

2). Solve for x:
$$\frac{3}{3x+1} - \frac{1}{4} = \frac{x-2}{7x-1}$$

3.): Solve for x:
$$\frac{5}{x + \frac{3}{x + 4}} - \frac{4}{x + \frac{2}{x + 3}} = \frac{1}{\frac{x^2 + 5x + 6}{x + 1}}$$

Match 5 Round 3 Geometry: Circles

1.) _____5

Note: Diagrams not necessarily to scale

1.) In the picture above, \overline{AB} and \overline{CD} are chords of a circle that intersect at E. AE=x-1, AB=2x, CE=x-4, and DE=3x-5. Find the difference CD -AB.

2) Two circles with circles P and Q are tangent to the same line at points A and B and tangent to each other. If the radius of circle P is 9 and the radius of circle Q is 4, what is the length of segment \overline{AB} ?

3.) For the circle with center O above, PA and PB are tangent to circle O at A and B. The line from P through O intersects the circle at C as shown above. If OA = x-20, OP=x-15, and $AP=\sqrt{3x}$, find the perimeter of quadrilateral APBC.

Match 5 Round 4
Quadratic
Equations and
Complex
Numbers

- 1.) 3+2i, 3-2i
- 2.) ______
- 3.) _______
- 1) Find the two complex solutions of $x^2 + bx + c = 0$ if the sum of the solutions is 6 and the product of the solutions is 13.

2.) Simplify:
$$\frac{(2+i)^3}{3-i} - \frac{(2-i)^3}{3+i}$$

3) Solve for all complex x: $x^2 + (3-4i)x - 12i = 0$

Match 5 Round 5 Solving Trig Equations

- 1.) 6,30,78,102,150, 174 degrees
- 2.) 雪, 下, 5雪
- 3.) 4, 34, 75, 15
- 1) Solve for all x $0^{\circ} \le x \le 180^{\circ}$: $\sin(5x) = \frac{1}{2}$
- 2) Solve for all x: $0 \le x < 2\pi$ $\tan^2(x) \sec(x) = 1$

3.) Solve for all x $0 \le x < \pi$: $\sin(4x) + \cos(2x) = 0$

Match 5 Round 6 Sequences and Series

- 1.)____
- 2.) 3,28
- 3.) 25
- 1.) For what natural number n is $0.76 < \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k^2} < 0.80$
- 2.) An arithmetic sequence has first term -2. The second term is the square reper of the fourth term. Find all possible values of the sixth term.
- 3.) An infinite geometric series converges to 6.25. The second term of the original geometric sequence is 4 less than the first term. Give all possible values for the fourth term of the sequence.

Match 5
Team Round

Match 5
Team Round
1.)
$$\frac{4}{77}$$
Note: Diagrams not 2.) $\pm 3\sqrt{10}$
5.) $\frac{5}{8}$

necessarily drawn to scale.

wn to 3.)
$$\frac{55}{9}$$
 degrees 6.) -4 , $2+2i\sqrt{3}$, $2-2i\sqrt{3}$

1.) Simplify:
$$\frac{1}{7} * \frac{1}{8} + \frac{1}{8} * \frac{1}{9} + \frac{1}{9} * \frac{1}{10} + \frac{1}{10} * \frac{1}{11}$$

2.) Solve for x:

$$2 - \frac{x}{3 - \frac{x}{4 - \frac{x}{5 - \frac{x}{6}}}} = 4$$

- 3.) In the diagram above, PA and PB are tangent to the circle with center O at points A and B. The measure of arc ACB is $2x^2$ -3 and the measure of arc ADB is $4x^2 - 2x - 5$. Find the degree measure of $\angle APB$.
- 4.) Find the two complex square roots of $-1+i\sqrt{3}$.
- $\cos(x + \frac{\pi}{4}) = \frac{3}{4}$ 5.) What are all possible values for sin(x) if
- 6.) A geometric sequence $\{a_n\}$ of complex numbers has the property that $a_4 = -64a_1$. Find all possible values for the common ratio of the sequence.