Match 2 Round 1

Arithmetic: Factors &

Multiples

3.)
$$p^8 + q^8$$
 or $1 + p^8q^8$

1.) How many integers less than 100 are the product of two odd (not necessarily distinct) primes?

2.) The greatest common factor of m and n is 24. The least common multiple of m and n is 360. Find the number of factors of mn.

3.) Let p and q be distinct prime numbers. If the greatest common factor of A and B is pq and the least common multiple of A and B is p^3q^3 , find the value of $\frac{A^4+B^4}{AB}$ in terms of p and q.

Match 2 Round 2

Algebra 1: Polynomials

and Factoring

1.)	_{m/s} zeci-ф	6

3.)
$$(a+4b-2)(a+2b+2)$$

1.) If
$$(x + 1)(x - 1) + x(x + 2)(x - 3)$$
 is written as $ax^3 + bx^2 + cx + d$, find the value of $a + b + c + d$.

- 2.) For how many different values of k does $x^2(x^k + 3x 1) x^4$ represent a quartic polynomial?
- 3.) Factor the following into the product of two trinomials with integer coefficients: $a^2 + 6ab + 8b^2 + 4b 4$.

Match 2 Round 3
Geometry: Area & Perimeter

- 1.) $\frac{121}{8}$ Γ cm²
- 2.) _____ 126O _____ in²
- 1.) A circle is inscribed in a square with a diagonal length of 11 cm. What is the area of the circle in square centimeters?
- 2.) An isosceles trapezoid whose larger base is twice the length of its smaller base has a midsegment (median) length of 60 in and a perimeter of 178 in. What is its area in square inches?
- 3.) A rhombus has a perimeter of $24\sqrt{5}$ units and an area of 76 square units. Find the sum of the lengths of the diagonals of the rhombus.

Match 2 Round 4 Algebra 2: Absolute Value & Inequalities

Remember to use AND or OR or the shorthand conjunction for a conjunction if you answer with <, >, \leq , or \geq . You may use union or intersection symbols if answering with interval notation.

1.)
$$X = 6$$
 or $X = \frac{4}{3}$

$$(4, \frac{15}{4}, \frac{23}{4})$$

1.) Solve for all values of x: |2x - 5| = x + 1

2.) The compound inequality a < |x - b| < c has a solution set for x of $(-2,1) \cup \left(\frac{13}{2},\frac{19}{2}\right)$. Write the ordered triple (a,b,c).

3.) Solve for all values of x: $\frac{1}{2|x-3|-5} < 3$.

Match 2 Round 5
Precalculus: Law of Sines
& Cosines

1.)	<u>-5</u> 28	
2.)	<u>8</u> 5	
3)	<u>8</u> 3	

- 1.) If for triangle ABC, AB = 6, BC = 7, and AC = 10, find the numerical value of min(cos(A), cos(B), cos(C)).
- 2.) Consider triangle ABC with point D on \overline{AC} . If AB = 6, AD = 8, the area of triangle ABD is 10, and the area of triangle BCD is 2, find CD.
- 3.) Consider kite ABCD with AB = AD = x and BC = CD. If $tan(A) = \frac{3}{4}$, $\angle A$ is supplementary to $\angle C$, and the perimeter of the kite can be written as kx, find the value of k.

Match 2 Round 6

Miscellaneous: Equations of

Lines

2.)
$$(10/-15)$$

3.) $y = -\frac{2}{3}x - \frac{13}{3}$

1.) If the line Ax + By = C is perpendicular to $y = \frac{2}{3}x + 5$ but has the same y –intercept, find the value of $\frac{AC}{B^2}$.

2.) The line $y = \frac{3}{5}x + 8$ can be represented parametrically by the equations y(t) = 6t - 1 and x(t) = at + b. Find the ordered pair (a, b).

3.) The point (5,1) lies on the circle $(x-1)^2 + (y+5)^2 = 52$. There are exactly two other points on the circle that are $2\sqrt{26}$ units away from (5,1). Find the equation of the line passing through these two points in slopeintercept form.

Team Round

FAIRFIELD COUNTY MATH LEAGUE 2019-2020 Match 2 Team Round

4.)
$$(x+y+z)(x-y-z)(x-y+z)(x+y-z)$$

- 1.) The greatest common factor of M and 100 is 10. The least common multiple of M and 308 is 4620. Find the number of factors of the greatest possible value of *M*.
- 2.) Consider triangle ABC drawn on the Cartesian plane with AB = AC and with point A in Quadrant III. If point B is located at (0,5), point C is located at (8,-1), and the triangle has an area of $25\sqrt{3}$ square units, find the slope of the line \overrightarrow{AB} in simplest radical form.
- 3.) If a and b are real numbers such that a < 0 < b and the equation |x a| = |x b|shares a solution for x with the equation |x - b| = b + 3, find a in terms of b.
- 4.) Factor into trinomials with no power higher than 1: $(x^2 y^2 z^2)^2 4y^2z^2$
- 5.) A cruise ship is located 20 km away from a Coast Guard outpost at a bearing of 20 degrees East of North. The cruise ship is moving at a speed of 30 km/hr at a bearing of 10 degrees North of East. If a speedboat leaves the outpost to intercept the cruise ship's course without changing direction and travels at a rate of 50 km/hr, find the total distance in kilometers traveled by the speedboat by the time it intercepts the cruise ship.
- 6.) Consider trapezoid TRAP with $\overline{TR} \parallel \overline{AP}$ and $m \angle A > m \angle P$. The diagonals intersect and point D. If TR = 6 and the perpendicular distance from D to \overline{AP} is 8, find the area of triangle TPD.