Match 1 Round 1 Arithmetic: Percents

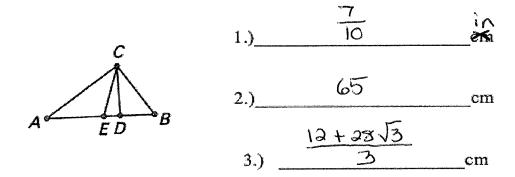
- 1)_N=_1000
- 2.) __\$_500
- 3.) C = 252 R = 120
- 1.) 30% of 40% of 50% of N is 60. Find N.
- 2) The price of an item was decreased by 10%, then increased by \$20, then decreased by 30%, then increased by \$51, then decreased by 40% If the final price was \$228, what was the original price?

3.) In Buford's exercise program, he burns 5% more calories per minute when he cycles than when he runs. He cycles for half an hour and burns C calories. He runs for 15 minutes and burns R calories. Three more than twice the total number of minutes Buford exercised is numerically 25% of the total number of calories burned. Find C and R.

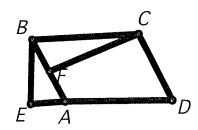
Match 1 Round 2

Arithmetic: Equations

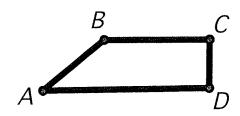
$$1) \underline{\qquad} x = \underline{\frac{119}{39}}$$


3.)
$$y=6, \frac{1}{7}$$

1) Solve for x:
$$6x-5(x-4(x-3(x-2)))=1$$


2) m and n are natural numbers such that $1 \le m \le 100$ and $1 \le n \le 100$. How many distinct ordered pairs (m,n) solve the equation $m^2 - 4n = 1$?

3) Solve for y:
$$(y+1)(y+2)(2y-3) = 2y(y+8)(y-3)$$
.


Match 1 Round 3 Geometry: Triangles and Quadrilaterals

1. In right $\triangle ABC$ of sides 3", 4", and 5". the right angle is at C. An altitude is drawn from C and meets \overline{AB} at D. A median is drawn from C and meets \overline{AB} at E. Find the distance DE.

2. In the figure above, ABCD is a parallelogram. A lies on DE, F lies on BA, $BE \perp AE$, and $BF \perp CF$. BE = 10 cm and CF = 16 cm. The area ABCD is 200 cm². Find the perimeter of ABCD.

3. In trapezoid ABCD above, AB=BC, \overline{AD} is parallel to \overline{BC} , $\angle B = 120^{\circ}$, $\angle C = \angle D = 90^{\circ}$, CD=4 cm Find the perimeter of the trapezoid.

Match 1 Round 4 Algebra 2 Simultaneous Equations

1.)
$$x = 24$$
 $y = -9$

3.)
$$x = -2$$
 $y = \frac{2}{5}$

1.) Solve for x and y:

$$\frac{x}{4} - \frac{y}{3} = 9$$

$$y = \frac{x}{6} - 13$$

2. Solve for all ordered pairs (a,b)

$$2a + b = 2$$

$$a^2 + b^2 = 1$$

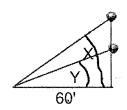
3. Solve for x and y:

$$\frac{xy}{x+v} = \frac{1}{2}$$

$$\frac{xy}{x-y} = \frac{1}{3}$$

Match 1	Round 5
Trig	
Right Tr	iangles

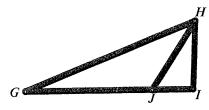
	13	
1.)	77	


Note: Diagrams are not necessarily drawn 2.)___ to scale.

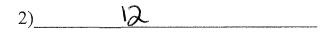
		ės.
.)		

3.)______15

1. In right triangle ABC, the right angle is at C.


$$BC = \frac{4}{9}, \sin(B) = \frac{5}{13}$$
. Find AB.

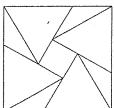
2. A balloon is rising vertically. You are 60 feet away from the balloon horizontally. At a given time, the angle of elevation to the balloon is Y. Three seconds later, the angle of elevation to the


balloon is X.
$$\sin(X) = \frac{5}{13}, \sin(Y) = \frac{7}{25}$$

What is the average rate of change in height of the balloon in feet per second during the three seconds?

3. In right \triangle HIG above, where $\angle I$ is a right angle, HI=4, JI=1, and $\cos(\angle HGI) = 4\cos(\angle HJI)$ Find GJ.

Match 1 Round 6
Coordinate Geometry

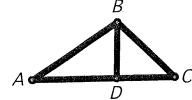


- 1.) Give the equation of the line parallel to 3x+4y=24 passing through the point (6,-2). Express your answer as y=mx+b for constants m and b
- 2.) How many distinct ordered pairs (a,b) exist such that a and b are both integers, and the length of the segment connecting (a,2) and (3,b) is 5?
- 3) \overline{AB} has length $2\sqrt{5}$. The perpendicular bisector of \overline{AB} is the line y=-2x+13. The distance from (1,11) to the midpoint of \overline{AB} is $3\sqrt{5}$. Give the four possible values for the x-coordinate of point A.

FAIRFIELD COUNTY MATH LEAGUE 2019-2020 Team Round Match 1 Diagrams are not necessarily drawn to scale.

$$2.) \underline{\qquad \qquad 3 - \sqrt{3}}{2}$$

1.) $M \neq N \neq P \neq 0$. M% of P is 24 less than N. N% of M is one-tenth of P. P% of N is eight-fifths of M. Find M, N, and P.



- A square of side 1 cm has four congruent equilateral triangles 2.) Find the largest side of any of the triangles in the diagram. constructed in it as shown.
- 3.) Find the area of the quadrilateral whose vertices are the pairwise intersections of

$$y = \frac{1}{2}x - 3$$
, $y = -2x + 12$, $x - 2y = -9$, and $8x - y = -12$

4.) Solve for x:

$$x^{2}(x-1)(3x+1)-7x+11=(((3x-2)x+2)x+1)x+16$$

5.)

Altitude BD is drawn for $\triangle ABC$. A and C are acute angles.

BD = 4 cm.
$$\cos(\angle A) = \frac{4}{5}, \cos(\angle C) = \frac{12}{13}$$
. Find the perimeter of $\triangle ABC$

6.) Give all ordered pair solutions (x,y) for the system

$$x^{2}-4x+(y-1)^{2}=21$$

$$x-2=y^2-2y-4$$