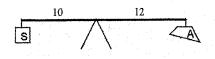
MASSACHUSETTS ASSOCIATION OF MATHEMATICS LEAGUES

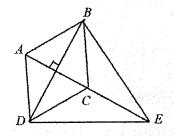
NEW ENGLAND PLAYOFFS - 2011 - SOLUTIONS

Round 1 Arithmetic and Number Theory

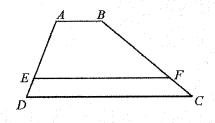
- 1. $3(1.\overline{2})(.\overline{20}) = 3 \cdot \frac{11}{9} \cdot \frac{20}{99} = \frac{20}{27} = .\overline{740}$. Thus, $(A, B, C) = [\overline{(7, 4, 0)}]$.
- 2. If a number has exactly three factors, then it must be of the form p^2 , where p is a prime. The answer is $97^2 = \boxed{9409}$.
- 3. Since $N = \frac{10A + B}{99}$ and $M = \frac{10B + A}{99}$ we have $\frac{4}{7}(10A + B) = (10B + A) \rightarrow A = 2B$. Thus, $N = .\overline{21}, .\overline{42}, .\overline{63}$, and $.\overline{84}$. In reduced fractional form $N = \frac{7}{33}, \frac{14}{33}, \frac{7}{11}, \frac{28}{33}$.


Round 2 Algebra 1

- 1. Let x = the number of points he earned and let y = the total number of possible points. Then $\frac{x}{y} = .75$ and $\frac{x+6}{y} = .76$ giving $.75y + 6 = .76y \rightarrow 6 = .01y$. Thus, y = 600.


 Alternate Solution: 6 points is equivalent to a 1% improvement. \therefore 600 points = 100%,
- 2. We need at least 4 elements and that would give $\frac{1+1+2+x}{4} = 3$, making x = 8, but the value of x that gives the right mean gives a median of 1.5, not 2. Consider a set of five elements: 1, 1, 2, x, y. Then $\frac{1+1+2+x+y}{5} = 3$, giving x + y = 11. A set with more elements will have a larger sum, so the answer must have five elements. The set with the least largest element would be $\{1, 1, 2, 5, 6\}$.
- 3. Simplifying gives $\sqrt{\frac{(x-4)^2}{(x-3)^2}} = \frac{1}{2} \rightarrow \left| \frac{x-4}{x-3} \right| = \frac{1}{2}$. If $x \ge 4$ we have $\frac{x-4}{x-3} = \frac{1}{2} \rightarrow x = 5$. If 3 < x < 4, we have $\frac{4-x}{x-3} = \frac{1}{2} \rightarrow x = \frac{11}{3}$. If x < 3, we have $\frac{4-x}{3-x} = \frac{1}{2} \rightarrow x = 5$ but this lies outside the range of values in this case. Hence, $x = 5, \frac{11}{3}$. Alternate Solution: Express the radicand as a single fraction, square both sides, and cross multiply. $4(x-3)^2 2x + 7 = (x-3)^2 \rightarrow 3x^2 26x + 55 = (3x-11)(x-3) = 0$.

Round 3 - Geometry


1. Let W_A and W_S be the weights of A and S respectively. Then $12 \cdot W_A = 10 \cdot W_S$, making $\frac{W_A}{W_S} = \frac{5}{6}$. Since the figures are made of the same material, the ratio of weights is the same as the ratio of their areas so the area of A is $\frac{5}{6} \cdot 16 = \boxed{\frac{40}{3}}$.

2. Since $\overline{BD} \perp \overline{AE}$, ΔBAC and ΔBAE have the same altitude so their areas have the same ratio as their bases, namely 1:3. Thus, the ratio of the area of ABCD to the area of ABED is $\boxed{\frac{1}{3}}$.

3. Let AE = 4x, ED = x, BF = 4y, and FC = y. Then 4x + 4y + 10 + EF = x + y + 30 + EF. So $x + y = \frac{20}{3} \rightarrow 5x + 5y = AD + BC = \frac{100}{3}$. The perimeter of $ABCD = 40 + \frac{100}{3} = \frac{220}{3}$.

Round 4 - Algebra 2

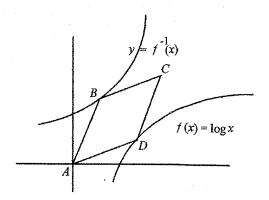
1.
$$a = 4\log 4 \to \frac{a}{4} = \log 4$$
; $b = 5\log 5 \to \frac{b}{5} = \log 5$. Also, $\log 20^{20} = 20(\log 4 + \log 5)$, giving $20\left(\frac{a}{4} + \frac{b}{5}\right) = \sqrt{5a + 4b}$.

2. There are ${}_{20}C_3 = \frac{20!}{3! \cdot 17!} = 1140$ possible unordered triples of numbers. Of those the following form an increasing geometric sequence:

There are 11 sequences so the probability is
$$\frac{11}{1140}$$

3. Let x = 1000, giving $(x + 3)^3 - 4(x + 1)^3 + 4(x - 1)^3 - (x - 3)^3$. The first and last terms sum to $(x^3 + 9x^2 + 27x + 27) - (x^3 - 9x^2 + 27x - 27) = 18x^2 + 54$. The second and third terms sum to $4(x^3 - 3x^2 + 3x - 1) - 4(x^3 + 3x^2 + 3x + 1) = -24x^2 - 8$. Adding this to $18x^2 + 54$ gives $-6x^2 + 46$. Since x = 1000, the sum is -5,999,954.

Note: in this case the sum depends upon the value of x. But, if we replace the 4's with 3's and proceed as above, we obtain $(x + 3)^3 - 3(x + 1)^3 + 3(x - 1)^3 - (x - 3)^3 =$


$$(18x^2 + 54) + (-18x^2 - 6) = 48$$
. In this case, the sum does not depend on the value of x, that is, it is invariant.

Round 5

Round 5 - Analytic Geometry

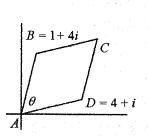
- 1. The intersection points of the parabola and horizontal line are (2,-10) and (6,-10). The minor axis is 4 units long. $y = -3x^2 + 24x 46 = -3(x-4)^2 + 2$ The vertex of the parabola is at (4,2). The other end of the major axis is at (4,-22) making it 24 units long. $24 + 4 = \boxed{28}$
- 2. The trisection points are D = (3,1) and C = (6,2). Let P = (0,y). The absolute value of the slope of \overline{PC} is less than the absolute value of the slope of \overline{PD} so $\frac{m\overline{PC}}{m\overline{PD}} = \frac{1}{6} \rightarrow \frac{y-2}{-6} / \frac{y-1}{-3} = \frac{1}{6}$. Thus, $\frac{y-2}{y-1} = \frac{1}{3}$ gives $y = \frac{5}{2}$. Answer: $\left[0, \frac{5}{2}\right]$

3. Let the coordinates of D be $(x, \log x)$, making the coordinates of $B = (\log x, x)$. Set AB = BC obtaining $\sqrt{(\log x)^2 + x^2} = \sqrt{(\log x - 4)^2 + (x - 4)^2}$. Squaring and canceling gives $\log x + x = 4$. Ans: 4 Note: Nothing in the solution requires logs. So the result holds as long as the problem involves a function and its inverse.

Alternate solution: The midpoint of \overline{AC} is (2, 2), its slope is 1 and its equation is x - y = 0.

Therefore the slope of \overline{BD} is -1 and its equation is x + y = 4.

Alternate Solution #2


If the coordinates of D are (a, b), then the coordinates of B are (b, a). Since ABCD is a rhombus, $AB^2 = BC^2 \rightarrow a^2 + b^2 = (4-a)^2 + (4-b)^2 \rightarrow 0 = 32 - 8a - 8b \rightarrow a + b = \boxed{4}$.

Round 6 - Trig and Complex Numbers

1. Tan⁻¹
$$-\frac{6}{5} = A \rightarrow \left(\frac{5}{\sqrt{61}}' - \frac{6}{\sqrt{61}}\right)$$
 is on the unit circle. $\therefore \sin 2A = 2\left(-\frac{6}{\sqrt{61}}\right)\left(\frac{5}{\sqrt{61}}\right) = \boxed{-\frac{60}{61}}$

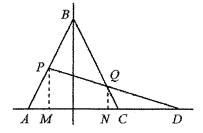
2.
$$r = \frac{4}{2\sin\theta - 3\cos\theta} \rightarrow r = \frac{4}{2 \cdot \frac{y}{r} - 3 \cdot \frac{x}{r}} \rightarrow 2y - 3x = 4.$$
If $x = 5$ then $y = \frac{19}{2}$.

3. Using vectors,
$$B = \langle 1, 4 \rangle$$
, $D = \langle 4, 1 \rangle$, we obtain $\cos \angle \theta$ using the dot product: $\cos \angle \theta = \frac{\langle 1, 4 \rangle \cdot \langle 4, 1 \rangle}{\sqrt{17} \cdot \sqrt{17}} = \frac{8}{17}$. Then $\sin \angle \theta = \frac{15}{17}$, making the area of $\triangle BAD = \frac{1}{2} \cdot \sqrt{17} \cdot \sqrt{17} \cdot \sin \theta = \frac{17}{2} \cdot \frac{15}{17} = \frac{15}{2}$. Thus, the area of the

parallelogram is 15

Alternate Solution 1: By determinants $\begin{vmatrix} 4 & 1 \\ 5 & 5 \end{vmatrix} = 15$

Alternate solution 2: The equation of \overline{AD} is x - 4y = 0 and the equation of \overline{BC} is x - 4y = -15. The area is the difference of the C's: 0 - (-15) = 15.


Alternate Solution 3: Alternate Solution 3:

C(5, 5) Listing the coordinates in clockwise (or counterclockwise) order starting at any vertex, the area is equal to

$$\begin{vmatrix} 0 & 0 \\ 1 & 4 \\ 5 & 5 \\ 4 & 1 \\ 0 & 0 \end{vmatrix} = \frac{1}{2} |(0 \cdot 4 + 1 \cdot 5 + 5 \cdot 1 + 4 \cdot 0) - (0 \cdot 1 + 4 \cdot 5 + 5 \cdot 4 + 1 \cdot 0)| = \frac{1}{2} |10 - 40| = \boxed{15}$$

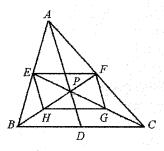
Team Round

- 1. Consider the remainder if we divide the sum of the digits by 9. That remainder is invariant. Dividing each of the numbers from 1 to 9, 10 to 18, etc., by 9 yields the nine remainders from 0 to 8, so for every set of consecutive nine numbers, the resulting one-digit number will be the numbers from 0 to 8. So from 1 to 999,999 there will be equal numbers of one-digit numbers from 0 to 8, namely 111,111 of each. Since the remainder when 10⁶ is divided by 9 is 1, there is one more 1 among the one-digit numbers. Answer: 111,112.
- 2. The equation of \overline{AB} is y = 3x + 6, the equation of \overline{BC} is y = -3x + 6, and the equation of the line through D with slope m is y = m(x 4). Setting the equations equal we find that $P = \left(\frac{4m + 6}{m 3}, \frac{18m}{m 3}\right)$ and also

$$Q = \left(\frac{4m+6}{m+3}, \frac{-6m}{m+3}\right)$$
. The area of $\triangle ABC = \frac{1}{2} \cdot 4 \cdot 6 = 12$. To find m, subtract the area of

 ΔQCD from the area of ΔPAD and set the result equal to 6. Thus, we have

$$\frac{1}{2} \cdot 6 \cdot \frac{18m}{m-3} - \frac{1}{2} \cdot 2 \cdot \frac{-6m}{m+3} = 6 \rightarrow 3m^2 + 8m + 3 = 0 \rightarrow m = \frac{-4 \pm \sqrt{7}}{3}$$
. Since the slope of \overline{BD} is


$$-\frac{3}{2}$$
, we choose the value of m giving a line not as steep as \overline{BD} : $m = \frac{-4 + \sqrt{7}}{3}$

3. From $\frac{a}{5} + \frac{b}{5} + \frac{c}{5} = 1$ we have a + b + c = 5 where $a, b, c \in \{0, 1, 2, 3, 4, 5\}$. Thus, it seems that our answer will be partitions involving 3 numbers and the permutations of those triples.

Triples	number of permutations	Total
0-0-5	3 - 1 - 2 - 1 - 1	3
0-1-4	6	6
0-2-3	6	. 6
1-1-3	3	3
1-2-2	3	3

Makes 21 different colors.

4. Since \overline{EF} is a midline of ABC and \overline{GH} is a midline of PBC, then both are parallel to \overline{BC} and half as long. Thus, EFGH is a parallelogram and EF + GH = 42. Since \overline{EH} is a midline of BPA and \overline{FG} is a midline of CPA, then $EH + FG = AP = \frac{2}{3}AD$. To

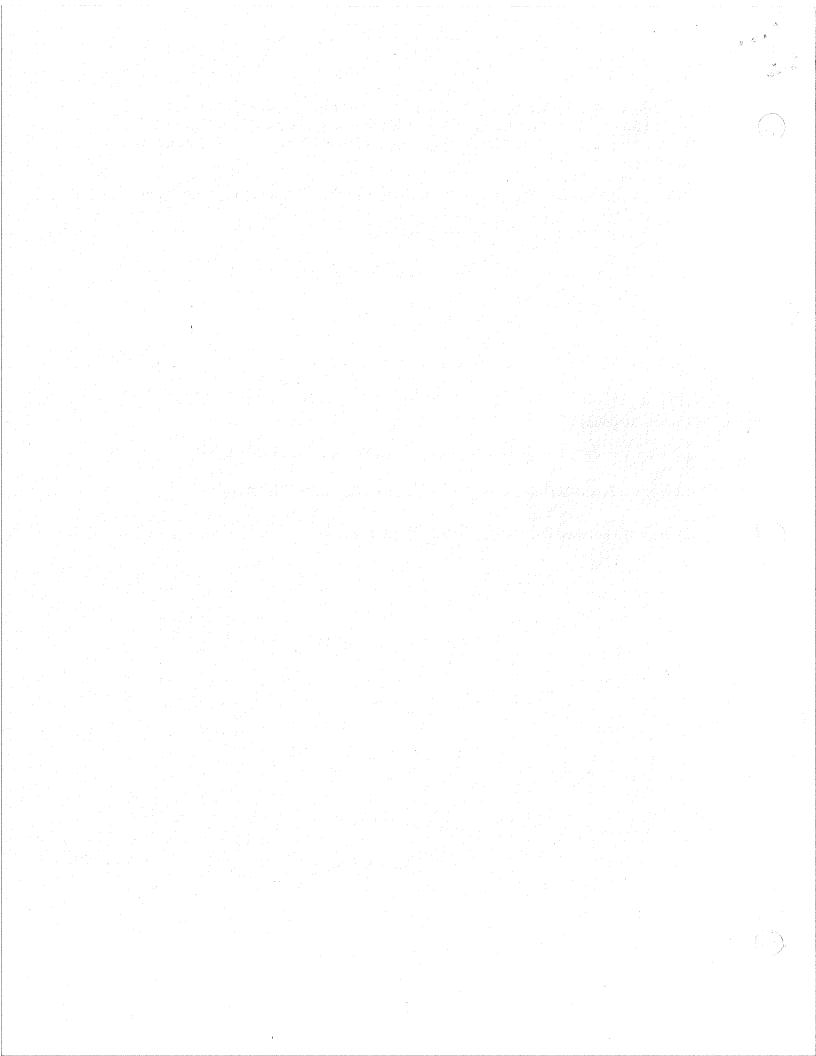
calculate AD use the

parallelogram law:
$$2(AB^2 + AC^2) = BC^2 + (2AD)^2 \rightarrow 2(21^2 + 27^2) = 42^2 + 4 \cdot AD^2$$
 giving $AD = 12$, so $AP = 8$. The perimeter of $EFGH = 50$.

Alternate Solution: The length of median \overline{AD} can be found from the median formula $\frac{1}{2}\sqrt{2\cdot AB^2 + 2\cdot AC^2 - BC^2}$. In this case $\frac{1}{2}\sqrt{2\cdot 441 + 2\cdot 729 - 1764} = 12$ Alternate Solution 2: Stewart's Theorem $\left(AB^2 \cdot BD + AC^2 \cdot BD = AD^2 \cdot BC + BC \cdot BD \cdot DC\right)$ $21^2 \cdot 21 + 27^2 \cdot 21 = AD^2 \cdot 42 + 42 \cdot 21^2 \rightarrow 21^2 + 27^2 = 2\left(AD^2 + 21^2\right)$ $\rightarrow 2AD^2 = 27^2 - 21 = (27 + 21)(27 - 21) = 48 \cdot 6$ $\rightarrow AD = \sqrt{48 \cdot 3} = \sqrt{16 \cdot 9} = 12$... and the results follows.

Note that the difference between
$$N$$
 and its percent P goes up as N increases. For example, if $N=12$, $P=10$ and if $N=42$, $P=35$. Setting $\frac{N}{120}=\frac{N-4.5}{100}$ we obtain $N=27$. Setting $\frac{N}{120}=\frac{N-5.5}{100}$, we obtain $N=33$. It would seem that for $N=10$

= 27, 28, 29, 30, 31, 32, and 33, then P = N - 5, but we must exclude 27 since 22.5 would round up to 23, a difference of 4. We don't exclude 33 since 27.5 rounds up to 28, a difference of 5. Thus, there are $\boxed{6}$ values of N for which the raw score exceeds the percentage by 5.


Alternate solution: Let R(x) denote the rounding function. The percentage is obtained as $R\left(\frac{100N}{120}\right) = R\left(\frac{5N}{6}\right)$. We seek all N for which $N - R\left(\frac{5N}{6}\right) = 5 \rightarrow N = R\left(\frac{5N}{6}\right) + 5$. By the nature of R(x), $\frac{5N}{6} + 4.5 < R\left(\frac{5N}{6}\right) + 5 \le \frac{5N}{6} + 5.5 \rightarrow \frac{5N}{6} + 4.5 < N \le \frac{5N}{6} + 5.5 \rightarrow 27 < N \le 33$.

6. Convert to polar:

$$(x^2 + y^2)^3 = 9x^2y^2 \rightarrow (r^2)^3 = 9(r\cos\theta)^2(r\sin\theta)^2 \rightarrow r^2 = 9\cos^2\theta\sin^2\theta.$$

Then $r = \pm 3\cos\theta\sin\theta \rightarrow r = \pm\frac{3}{2}\cdot 2\cos\theta\sin\theta = \pm\frac{3}{2}\sin2\theta$. The maximum

distance of a point on this curve from the pole or origin is $\frac{3}{2}$

