Match 5 Round 1 Algebra I: Fractions and Exponents

1) Express as an integer or a reduced fraction: $(225)^5(75)^{-4}(45)^{-3}(15)^2(5)^{-1}(3)^0$

_2) If $x = a^{12}b^{-18}c^{24}$, where $a\neq 0$, $b\neq 0$, $c\neq 0$, express as a single reduced rational expression in terms of only x and constants:

$$\left(2a^2b^{-3}c^4\right)^6 + \left(a^6\right)^4 \left(\frac{1}{3}b^{-18}\right)^2 \left(2c^{16}\right)^3 - \left(2a^{-6}\right)^2 \left(\frac{1}{4}b^6\right)^3 \left(4c^{-12}\right)^2$$

3) If $y\neq 0$ and $z\neq 0$, express as a single reduced rational expression with no negative exponents:

$$\frac{2}{y^5 z^6} - \frac{4}{\left(y^3\right)^2 z^{-2}} + \frac{5}{3(y^{-4})^3 z^8} - \frac{7}{(2y^{-2})^2 (3z)(z^5)}$$

Match 5 Round 2 Algebra I: Fractional Expressions and **Equations**

2.)
$$-2$$
3.) $\frac{5x + y}{y - 5x}$

1). Simplify the product as much as possible if no values of x make any denominators equal to zero: $\frac{x^2 - 10x + 24}{32 - 2x^2} * \frac{3x^2 + 30x + 72}{4x^2 - 144}$

2). Solve for all possible values of x:

$$3 - \frac{22}{x+5} = \frac{6x-1}{2x+7}$$

3). Simplify as much as possible given that $x\neq 0$, $y\neq 0$, $5x\neq y$, and $5x\neq -y$

$$\frac{5xy + y^2 + \frac{25x^2 - y^2}{1 - \frac{y}{5x}}}{y^2 - 5xy - \frac{25x^2 - y^2}{1 + \frac{y}{5x}}}$$

Match 5 Round 3 Geometry: Circles

2.)

Note: Diagrams not necessarily to scale.

1). \overline{BC} is a diameter of circle O. The line containing \overline{BC} passes through point A outside the circle. \overline{AD} is tangent to circle O. If AD= $\sqrt{60}$ and OC=2, find the length of \overline{AB} .

2). Circle P has its center in the interior of Circle O. \overline{AB} and \overline{DE} are chords of Circle O that meet at Z. \overline{ZF} and \overline{ZC} are tangent to Circle P at points F and C respectively. If AZ = x - 5, $BZ = \frac{x}{5}$, EZ = x - 9, $DZ = \frac{x}{4}$, and ZC = 5, find the length of \overline{EF} .

3.) Circle O has radius 4 cm \overline{AB} is a diameter of the circle and intersects chord \overline{CD} at E. The length of arc AC is π cm and the measure of $\angle AEC$ is 67.5 degrees. Find the length of \overline{OE} in cm.

Match 5 Round 4

Quadratic

Equations and

Complex

Numbers

1.)
$$\frac{\pm 3i}{32+1}$$
, $\pm 2i$

1) If
$$y^2 = x$$
, find all complex values of y for which $x^2 + 13x + 36 = 0$

2) Solve for w in terms of z if
$$z \neq \frac{-1}{3}$$
: $(3z+1)w^2 + (3z)w + 2 = 3$

3) Find the two complex square roots of
$$\frac{-11}{4}$$
 – 15*i*

FAIRFIELD COUNTY MATH LEAGUE (FCML) 2013-2014

Match 5 Round 5

Solving Trig

Fountions

Equations

- 2.) $\frac{11}{6} + \frac{\pi}{2} + \frac{5\pi}{6}$ 3.) $\frac{1 \pm 6\sqrt{2}}{10}$
- 1) Solve for all x if $0 \le x < 2\pi$: $2 \cos^2(x) \cos(x) = 1$

2) Solve for x if $0 \le x < \pi$: $\csc(x) \cot^2(x) = \csc^2(x) + \frac{3}{\sin(x)} - 4$

3) Find all values of $\sin(A)$ such that $\sin(A + \frac{\pi}{3}) = \frac{1}{5}$

FAIRFIELD COUNTY MATH LEAGUE (FCML) 2013-2014

Match 5 Round 6
Sequences and
Series

Series

1.) The sequence $\{L_n\}$ is defined recursively as follows: $L_1 = 1$, $L_2 = 3$, and for n>2, $L_n = L_{n-1} + L_{n-2}$. Evaluate $\sum_{i=1}^{n} L_n$.

2.) In an arithmetic sequence, the ninth term is 6 less than the square of the second term. If the fifth term is 11, find all possible values for the first term of the sequence.

3. For a geometric sequence $\{a_n\}$, $\sum_{n=0}^{\infty} a_n = 3125$. If $a_2 = 500$, what are all possible values for the fifth term of the sequence?

Match 5 Team	1.) (4/	2) (8,2) (8,4	(9,3)4.)	~35-5i	
Round		74585	/ - /	-41/7	
	2.)	6	5.)	3	
				= 16	
	3.)	9	6.)	12 3	

1) If a and b are integers such that $2 \le a \le 10$ and $2 \le b \le 10$, find all ordered pairs (a,b) such that the following expression is an integer: Give your answers as ordered pairs (a,b).

$$\frac{(77a^{2014})(13b^{-6})}{(a^{503})^4b^{-3}} - \frac{(10a^{15})^3(b^{10})^6}{a^{43}(b^9)^7}.$$

2.) Solve this equation for all possible values of x.

Give your answers in simplest radical form. $2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1}}} = x$.

3.) A circle with center A has radius x cm. A circle with center C has radius 5 cm. The two circles are externally tangent to one another at B. Circle A is tangent to \overrightarrow{DE} at D and circle C is tangent to \overrightarrow{DE} at E. The length of \overrightarrow{DE} is $6\sqrt{5}$ cm. Find the radius of the circle with center A.

4) Express in a+bi form for real numbers a and b. $\frac{125}{(1+2i)^3} + \frac{625i}{(2-i)^4}$

5. Find all possible values of tan(x) such that sec(x) - 2 tan(x) = 2.

6) In a geometric sequence of complex numbers, the 5th term is 4 less than twice the third term. If the 7th term is 18, what are all possible values for the first term of the sequence?