Match 5 Round 1

Algebra I: Fractions and Exponents

- 1.)
- 2.)
- 3.) _____
- 1.) If $x = p^{-3}q^{-4}r^{-8}$ and $y = p^6q^{-1}r^{-1}$, then simplify and express $\left(\frac{y^{-2}}{x^6}\right)^{\frac{-1}{2}}$ in terms of p, q, and r using non-negative exponents.

2.) If a, b, and c are integers, then find all possible solutions (a,b,c) that satisfy the equation $2^a \cdot 3^{a+1} \cdot 4^{a+2} \cdot 5^{c+3} \cdot 6^{a+4} \cdot 8^{a+6} \cdot 9^{\frac{b+7}{2}} \cdot 10^{a+8} = 100$

3.) If $(12^n \cdot (-2)^n \cdot 4^x \cdot 9^{x+6})^n = 1$, and x and n are integers, then find all real values of $\frac{x}{n}$.

Match 5 Round 2 Algebra I: Fractional Expressions And Equations

1.) Simplify as a fully factored, singular fraction:
$$\frac{x}{x-\frac{1}{x}} + \frac{1}{\frac{1}{x}} + 1$$

2.) Solve for
$$x$$
: $\frac{-4}{9+x} - \frac{6}{2x-7} = \frac{2x^2 - 25x + 6}{(x+9)(7-2x)}$

3.) Find all real values of x such that
$$\frac{\frac{x^2 - 2}{1 + x}}{2 - \frac{2}{1 + x}} = \frac{-1 + \frac{1}{x}}{x}.$$

Match !	5 Ro	ound	3
Geome	try:	Circl	es

1.)

Note: Diagrams are not to scale.

2.)

3.)

1.) Segment BD is tangent to circle $\not\!\!E$ at $\not\!\!A$. If $\overline{FE} \perp \overline{CE}$ and $m\widehat{FE} = 44^\circ$, then find the measure of $\angle D$.

to circle C

3.) Segment BD is tangent to circle A at B and A at D. \triangle . If CD = 2, AB = 3, and AC = 4, then find BC.

FAIRFIELD COUNTY MA Match 5 Round 4	TH LEAGUE (FCML) 2011-2012	
Algebra II: Quadratic Equations	1.)	
and Complex Numbers		
	2.)	
	3.)	
1.) Find the distance between the points representing $1+6i$ and $-1-4i$ in the complex plane.		
	1	
2.) The quadratic equation $x^2 + bx + c = 0$ (where b and c are complex numbers) has roots $9 - 4i$ and $-9 + 6i$. Find the product bc .		
100is 3 - 41 and -3 + 01. This the prod	auct oc.	

3.) For what real values of k does the equation $x^2 + 2(k+1)x + 4 = 0$ have roots that are <u>not</u> real?

Match 5 Round 5

Trigonometry: Solving Trigonometric Equations

1.) Solve for all real values of x, given that
$$0 \le x < 2\pi$$
: $\sin\left(\frac{1}{2}x\right) = \frac{1}{2}$

2.) Solve for all real values of x, given that
$$-\pi \le x < \pi$$
: $\cos\left(2x + \frac{\pi}{2}\right) = \sin x$

3.) Solve for all real values of x:
$$\left(\sin^{-1}\left(\frac{x}{4}\right)\right)^2 = \frac{\pi^2}{16}$$

Match 5 Round 6
Discrete Math: Sequences and Series

1.)

2.)

3.)

1.) Evaluate the sum $\sum_{n=6}^{1} (n-1)(n+1)$

2.) The first four terms of an arithmetic series add up to 10. The first seven terms of the same series add up to -14. Find the 9^{th} term of the series.

3.) A sequence is defined as $s_n = an^2 + bn + c$. If the first term of the sequence is 7, the second term is 5, and the third term is 1, then find the product $a \cdot b \cdot c$.

Match 5 Team Round

(4^{3x})x

- 1.) Solve for all values of x that make the equation $2^{3^4} = (x^2)^{-1}$ true.
- 2.) Find all real values of y such that the following equation has no solution:

$$1 + \frac{x+8}{x-5} = \frac{2x^2 - x - 4}{(x-2y)(x-5)}$$

 $\Delta HBC \sim \Delta HED$.

3.) In circle A, CG = 7, GH = 3, HD = 4, $FH = \frac{5}{2}$, BF = x, and HE = y. Find all ordered pairs (x, y) such that

- 4.) If a, and b are complex numbers, then find all possible ordered pairs (a,b) that are solutions to the system of equations: 8a + 8bi = -3 8i8ai + 4b = 7 3i
- 5.) Solve for all real values of x, given that $0 \le x < 2\pi$: $3\sec^2 x 6\tan^2 x = 2\sqrt{3}\tan x$
- 6.) Evaluate $\sum_{j=3}^{4} \left(\sum_{i=2}^{j} \left(\sum_{n=1}^{i} \left(\frac{1}{n} \right) \right) \right)$