
FAIRFIELD COUNTY MATH LEAGUE 2024–2025 

Match 4 

Individual Section 

 

Please write your answers on the answer sheet provided. 

 

 

Round 1: Basic Statistics 

 

1-1 A set of five positive integers has a median of 8, a unique mode of 2, and a range of 13. If 

the arithmetic mean of the numbers is an integer, what is the sum of the numbers? 

 

 

 

 

 

 

1-2 The Mean Absolute Deviation (MAD) of a set of numbers is the arithmetic mean of the 

absolute difference of each number and the arithmetic mean of the set. A set of four 

integers 𝑎, 𝑏, 𝑐, and 𝑑 has an arithmetic mean �̅�. If 𝑎 < 𝑏 < �̅� < 𝑐 < 𝑑, �̅� = 26 and the 

MAD of the set is 15, find the largest possible value of 𝑑. 
 

 

 

 

 

 

 

1-3 Set A consists of 50 positive 1-digit, 2-digit, and 3-digit integers. The elements of set B are 

formed by placing the digit “1” in front of each element of set A. The arithmetic mean of 

the elements of set B is 409.6 greater than the arithmetic mean of the elements of set A. 

Find the largest possible number of total digits of all the elements of set A. 
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Round 2: Quadratic Equations 

 

2-1 The quadratic function 𝑓(𝑥) = 𝑥2 − (3𝑘 + 1)𝑥 + 64 has only one distinct positive real 

zero. Find 𝑓(𝑘). 
 

 

 

 

 

 

2-2 The quadratic equation 4𝑥2 − 12𝑥 + 7 = 0 has zeros 𝑥 = 𝑚 and 𝑥 = 𝑛. The quadratic 

equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎, 𝑏, and 𝑐 are relatively prime integers and 𝑎 > 0, has 

zeros of 𝑥 = 2𝑚 + 1 and 𝑥 = 2𝑛 + 1. Find |𝑎| + |𝑏| + |𝑐|. 
 

 

 

 

 

 

 

 

2-3 There are two positive values of 𝑝 such that the equations 𝑦 = 3𝑥 − 2 and 𝑥 = 𝑝𝑦2 +

4𝑝𝑦 + 4 share only one solution (𝑥, 𝑦). The larger of the two values of 𝑝 is 
𝑎+√𝑏

𝑐
, where 

𝑎, 𝑏, and 𝑐 are positive integers and 𝑏 has no perfect square factors greater than 1. Find  

𝑎 + 𝑏 + 𝑐. 
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Round 3: Similarity 

 

3-1 Ivana Nicegarten is filling her decorative pool, which is shaped like a cone with the vertex 

pointed downward into the ground. Water is pouring into the pool at a constant rate. After 

12 minutes, the water in the pool has depth 𝑑. How many total minutes will it take for the 

depth to be 2𝑑? 

 

 

 

 

 

 

3-2 Consider trapezoid 𝐺𝐸𝑂𝑀, with 𝐺𝐸̅̅ ̅̅ ||𝑂𝑀̅̅ ̅̅ ̅, angles 𝐺 and 𝑀 are right angles, and 𝑚∠𝐺𝑀𝐸 =
𝑚∠𝐸𝑂𝑀. If 𝐺𝑀 = 12 and 𝐺𝐸 = 16, find the perimeter of the trapezoid. 

 

 

 

 

 

 

 

 

3-3 Consider parallel lines 𝑙1 and 𝑙2. One transversal intersects 𝑙1 at 𝐴 and 𝑙2 at 𝐵. A second 

transversal intersects 𝑙1 at 𝐶 and 𝑙2 at 𝐷, and the two transversals intersect at point 𝐸 which 

is between points 𝐶 and 𝐷. If 𝐴𝐶 = 12, 𝐶𝐸 = 8, 𝐷𝐸 = 6, and the total area of triangles 

𝐴𝐶𝐸 and 𝐷𝐵𝐸 is 𝑇 square units, then the distance between lines 𝑙1 and 𝑙2 is 
𝑎

𝑏
𝑇 where 𝑎 

and 𝑏 are positive integers with no common factors greater than 1. Find 𝑎 + 𝑏. 
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Round 4: Variation 

 

 

4-1 If 𝑦 varies directly as 𝑥 and 𝑥 = 40 when 𝑦 = 50, find the value of 𝑥 when 𝑦 = 95. 

 

 

 

 

 

 

 

4-2 A relationship where 𝑧 varies directly as the 1.5 power of 𝑥 and inversely as the square of 𝑦 

contains the ordered triple (𝑝, 𝑞, 𝑟). Increasing 𝑝 by 300% and decreasing 𝑞 by 33
1

3
% 

produces the new 𝑧-value 𝑠. Find 
𝑠

𝑟
. 

 

 

 

 

 

 

 

4-3 If 𝑦 varies inversely as the 𝑛th power of 𝑥 for some positive number 𝑛, and 𝑦 = 32 when 

𝑥 = 1 and 𝑦 = 1 when 𝑥 = 4, then 𝑦 = 𝑘 when 𝑥 = 36. Find 
1

𝑘
. 
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Round 5: Trig Expressions & DeMoivre’s Theorem 

 

5-1 A complex number 𝑧1 has an argument of 342° and is one of the complex 𝑛-th roots of the 

complex non-real number 𝑧2. If 𝑧2 has no complex 𝑛-th roots with a negative imaginary 

component and a real component greater than the real component of 𝑧1, find the largest 

possible value of 𝑛. 

 

  

 

 

 

 

 

5-2 If 𝑧 = (
1+7𝑖

2+𝑏𝑖
)
4
 where 𝑏 is a real number and 𝑧 has the same modulus as 3.2 + 2.4𝑖, find 𝑏2. 

 

 

 

 

 

 

 

 

5-3 If 𝐴 is an angle such that sin (𝐴 +
3𝜋

4
) =

√5

8
, then sin(2𝐴) =

𝑎

𝑏
  where 𝑎 and 𝑏 are positive 

integers with no common factors greater than 1. Find 𝑎 + 𝑏. 
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Round 6: Conic Sections 

 

6-1 One of the foci of the ellipse 
(𝑥−3)2

50
+

(𝑦+7)2

14
= 1 has a positive 𝑥-coordinate 𝑎. What is the 

value of 𝑎? 

 

 

 

 

 

 

6-2 A hyperbola has an asymptote with an equation of 𝑦 =
1

2
𝑥 +

7

2
 and a range of  

(−∞, 2] ∪ [6,∞). The largest 𝑦-value of the hyperbola where 𝑥 = 4 is 
𝑎

𝑏
 where 𝑎 and 𝑏 are 

positive integers with no common factors greater than 1. Find 𝑎 + 𝑏. 

 

 

 

 

 

 

 

 

6-3 An ellipse is centered at origin and has a focus at  (0, √2) and an area of 4√3𝜋. A circle is 

also centered at the origin and intersects the ellipse at points that lie on 𝑦 = 𝑥 and 𝑦 = −𝑥. 

The square of the radius of the circle is 
𝑚

𝑛
 where 𝑚 and 𝑛 are positive integers with no 

common factors greater than 1. Find 𝑚 + 𝑛. (Note: the area of an ellipse is 𝜋𝑎𝑏 where 𝑎 

and 𝑏 are semi-major and semi-minor axis lengths.) 
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1. The geometric mean of a set of 𝑛 numbers is the 𝑛th root of the product of the numbers. A set of 

three distinct positive integers greater than 1 has the property that its arithmetic and geometric 

means are both integers. What is the smallest possible value of the arithmetic mean of the set? 

 

 

2. The quadratic equations 𝑥2 − 8𝑥 + 𝑝 = 0 and 𝑥2 − 2𝑥 + 𝑞 = 0, where 𝑝 and 𝑞 are real constants, 

each have two positive solutions for 𝑥. They share one solution and the other solutions are 

reciprocals of each other. If  𝑝 = 𝑎 + 𝑏√𝑐, where 𝑎, 𝑏, and 𝑐 are positive integers and 𝑐 has no 

perfect square factors greater than 1, find 𝑎 + 𝑏 + 𝑐. 

 

 

3. Consider rectangle 𝐹𝐶𝑀𝐿, with 𝐹𝐶 = 8 and 𝐶𝑀 = 10. Point 𝑁 is draw on diagonal 𝐹𝑀̅̅̅̅̅ such that 

the distance from 𝑁 to 𝑀𝐿̅̅ ̅̅  is  7. Point 𝑇 is drawn on 𝐹𝐿̅̅̅̅  such that 𝐶𝑇̅̅̅̅  contains point 𝑁. 𝐿𝑇 =
𝑎

𝑏
, 

where 𝑎 and 𝑏 are positive integers with no common factors greater than 1. Find 𝑎 + 𝑏. 

 

 

4. If 𝑦 varies directly as the second power of 𝑥 and the ordered triple (𝑎, 𝑏, 𝑐) has the properties  that 

𝑎, 𝑏, and 𝑐 are all different positive integers and both (𝑎, 𝑏) and (𝑏, 𝑐) fit this particular variation 

relationship, find the smallest possible value of 𝑎 + 𝑏 + 𝑐 when 𝑏 = 30. 

 

 

5. If 𝑘 is a positive number such that arctan (
1

3
) + arctan(𝑘) = arctan (

2

3
), then 𝑘 =

𝑎

𝑏
 where 𝑎 and 

𝑏 are positive integers with no common factors greater than 1. Find 𝑎 + 𝑏. 

 

 

6. The circle 𝑥2 + 𝑦2 − 16𝑥 − 6𝑦 + 48 = 0 and the line 𝑥 = 𝑘, which lies to the left of the center of 

the circle, intersect at points 𝐴 and 𝐵 such that 𝐴𝐵 = 8. A particular conic section represents the 

set of all points equidistant from the center of the circle and the line. Find the 𝑥-coordinate of the 

two intersection points between the conic section and the circle. 

 

 


