Please write your answers on the answer sheet provided.

Round 1: Factors and Multiples

1-1 If M = lcm(18,24) and N = lcm(12,45), find lcm(M, N). [Answer: 360]

 $M = \frac{18*24}{6} = 72$ and $N = \frac{12*45}{3} = 180$, so the desired quantity is $\frac{72*180}{36} = 360$.

1-2 The number *n* has exactly 60 factors, including 1 and itself, and the largest possible number of trailing zeros. What is the smallest possible value of *n*? [Answer: 1600000]

To maximize the number of trailing zeros, we need to maximize the number of 2's and 5's in the prime factorization of the result. The prime factorization of 60 is $2^2 * 3 * 5$, we can create a number with at most 5 trailing zeros, using 60 = 10 * 6 and making a number of the form a^9b^5 . Let a = 2 and b = 5 to keep the result as small as possible. This makes $n = 2^4 * 10^5 = 1600000$, which is the desired quantity.

1-3 Let k be a positive integer such that gcf(k, 54) = 18 and lcm(k, 540) = 3780. If A is the sum of all possible values of k and B is the greatest common factor of all possible values of k, find $\frac{A}{B}$. [Answer: 18]

Since $54 = 2 * 3^3$ and $18 = 2 * 3^2$, it follows that *k* has at least one factor of 2 and exactly 2 factors of 3. Because $540 = 2^2 * 3^3 * 5$ and $3780 = 2^2 * 3^3 * 5 * 7$, we know *k* has at most 2 factors 2 and at most 1 factor of 5. Additionally, *k* must have a factor of 7. Therefore, *k* can have one of the following factorizations: $\{2 * 3^2 * 7, 2^2 * 3^2 * 7, 2^2 * 3^2 * 5 * 7, 2^2 * 3^2 * 5 * 7\}$. This makes $B = 2 * 3^2 * 7$ and $A = 2 * 3^2 * 7 * (1 + 2 + 5 + 10)$, making the desired quantity 1 + 2 + 5 + 10 = 18.

Please write your answers on the answer sheet provided.

Round 2: Polynomials and Factoring

2-1 If $f(x) = x^2 + 3x - 1$ and $g(x) = x^2 - (f(2) - 1)x - f(11)$, find the positive zero of g(x). [Answer: 17]

Note f(2) = 9 and f(11) = 153, so $g(x) = x^2 - 8x - 153$, which factors into g(x) = (x - 17)(x + 9), making the desired quantity 17.

2-2 The polynomial $f(x) = x^3 + ax^2 + bx + 2024$ has three integer zeros, one of which is shared with the polynomial $g(x) = 3x^2 - 31x - 22$. Find the smallest possible positive value of *a*. [Answer: 4]

Note that g(x) is factorable into g(x) = (x - 11)(3x + 2), so f(x) must have 11 as one of its integer zeros. This mean we need positive integers p and q such that f(x) = (x - p)(x + q)(x - 11) has a constant term of 2024 and q - p - 11 is a positive number that is as small and as possible. Since 11pq = 2024, we know $pq = 184 = 2^3 * 23$. Let q = 23 and p = 8 to get a = 23 - 8 - 11 = 4, which is the desired quantity.

2-3 There exist positive integers *a*, *b*, and *c* such that if the term ax^by^c is added to and subtracted from the polynomial $27x^9 + 576x^3y^6 + 512y^9$, the resulting polynomial is factorable as a difference of the cubes of two polynomials in *x* and *y* with integer coefficients. Find a + b + c. [Answer: 225]

Note that $27x^9 = (3x^3)^3$ and $512y^9 = (8y^3)^3$, and $576x^3y^6 = 3(3x^3)(8y^3)^2$. So adding the $3(3x^3)^2(8y^3) = 216x^6y^3$ produces the binomial cube $(3x^3 + 8y^3)^3$. In addition, $216x^6y^3 = (6x^2y)^3$, so subtracting it from the polynomial produces the difference of cubes $(3x^3 + 8y^3)^3 - (6x^2y)^3$, which would be factorable into two polynomials in *x* and *y* with integer coefficients. Therefore $216x^6y^3$ is the desired term, making the final desired quantity 216 + 6 + 3 = 225.

Please write your answers on the answer sheet provided.

Round 3: Area and Perimeter

3-1 The difference between the area of a circle with radius k and a circle with diameter k is 1200π . Find the value of k. [Answer: 40]

Setting up the equation $\pi k^2 - \pi \left(\frac{k}{2}\right)^2 = 1200\pi$, we can simplify to $\frac{3}{4}k^2 = 1200$, or $k^2 = 1600$, making the desired quantity k = 40.

3-2 A "deathly hallows" is a symbol composed of an equilateral triangle *ABC*, an altitude \overline{BD} with *D* on \overline{AC} , and a circle inscribed in the triangle. If Harry is going to use string to make a deathly hallows such that the inscribed circle has an area of 48π square inches, then the amount of string he would need in inches to make the whole figure is $a + b\sqrt{c} + d\sqrt{e\pi}$, where *a*, *b*, *c*, *d*, and *e* are positive integers and *c* and *e* have no perfect square factors greater than 1. Find a + b + c + d + e. [Answer: 98]

From the given information, the circle will have a radius of $4\sqrt{3}$, which is also one-third the length of the altitude of the triangle. Therefore the altitude length is $12\sqrt{3}$, giving the triangle a side length of 24. Therefore, the total length of the triangle perimeter, the altitude length, and the circumference of the circle is $72 + 12\sqrt{3} + 8\sqrt{3}\pi$, making the desired quantity 72 + 12 + 3 + 8 + 3 = 98.

3-3 A semicircle with area 100π is inscribed in a square such that the diameter of the semicircle is parallel to a diagonal of the square, as shown in the figure. If the area of the square is *A* and the perimeter of the square is *P*, find A - 5P. [Answer: 100]

See the diagram. From the given information, the radius of the circle must be $10\sqrt{2}$ (since the full circle would have an area of 200π). If *A* is the center of the circle, then $AB = 10\sqrt{2}$. Also note that triangle *ACD* is an isosceles right triangle with hypotenuse length $10\sqrt{2}$, so AC = 10. This means the square has side length $10 + 10\sqrt{2}$, and therefore $A = 300 + 200\sqrt{2}$ and $P = 40 + 40\sqrt{2}$. This makes the desired quantity $300 + 200\sqrt{2} - 200 - 200\sqrt{2} = 100$.

Please write your answers on the answer sheet provided.

Round 4: Absolute Value & Inequalities

What is the largest integer that satisfies the inequality |150x - 2024| < 1130? 4-1 [Answer: 21]

Every quantity can be divided by 2 to make |75x - 1012| < 565. Therefore we are finding the largest integer value of x that satisfies 75x - 1012 < 565, or 75x < 1577. Note that 75(20) = 1500, so 75(21) = 1575, making 21 the desired result.

The functions f(x) = |2x - 1| and g(x) = 5 - |x + 2| share the ordered pairs (a, b) and (c, d). 4-2 Find |a| + |b| + |c| + |d|. [Answer: 10]

See the diagram. f(x) has a vertex of $\left(0, \frac{1}{2}\right)$, opens upward, and has sides with slopes of 2 and -2. g(x) has a vertex of (-2,5), opens downward, and has sides of slopes 1 and -1. First note that (-2,5) is a point on f(x), so that I one of the intersection points. The other must be in quadrant one, being an intersection of y = 2x - 1 and y = -(x + 2) + 5. Setting 2x - 1 = -(x + 2) + 5 yields $x = \frac{4}{3}$, making the y-coordinate $\frac{5}{3}$. This makes the desired quantity 2 + 5 + 5 $\frac{4}{2} + \frac{5}{2} = 10.$

The function f(x) = ||3x + 2024| - 6| - k, where 0 < k < 6, has four *x*-intercepts. If the area 4-3 enclosed by f(x) between the second and third x-intercepts and bounded below by the x-axis has an area of $\frac{27}{16}$, then $k = \frac{a}{b}$ where a and b are positive integers that have no common factors greater than 1. Find a + b. [Answer: 19]

See the diagram. First note that the shift caused by the +2024 has no bearing on the result of the problem. To visualize this graph, first an absolute value graph with slides with slope 3 and -3 is shifted downward 6 units, followed by the part below the x-axis being reflected above the x-axis. This produces a "W" graph with a middle triangle above the x-axis with a height of 6 units. This whole graph is then shifted down k units, making a triangle between the second and third x-intercepts with a height of 6 - k units. Since the sides of the triangle have slopes of 3 and -3, then if the base of the triangle has length b, it follows that $\frac{6-k}{\underline{b}} =$

3, and so $\frac{b}{2} = \frac{6-k}{3}$. Therefore $(6-k)\frac{6-k}{3} = \frac{27}{16}$, and $(6-k)^2 = \frac{81}{16}$, yielding $6-k = \frac{9}{4}$ (the negative result produces a k outside the given range). This means $k = \frac{15}{4}$, making the desired quantity 15 + 4 = 19.

Please write your answers on the answer sheet provided.

Round 5: Law of Sines and Cosines

5-1 In triangle *ABC*, $\sin(A) = \frac{3}{5}$, $\sin(B) = \frac{1}{15}$, and *AC* + *BC* = 140. Find *BC*. [Answer: 126]

By the law of sines, $\frac{AC}{\sin(B)} = \frac{BC}{\sin(A)}$, or $\frac{\sin(A)}{\sin(B)} = \frac{BC}{AC} = 9$, so BC = 9AC. This mean 10AC = 140 so AC = 14, and therefore BC = 126.

5-2 A hiker hikes 15 kilometers directly west from point *A*, then turns in a direction of α° East of South and hikes for 7 kilometers to point *B*. If at that point the hiker turns and walks directly back to point *A*, she will have to walk a distance of *D* kilometers from point *B* to point *A*. If $\cos(\alpha^{\circ}) = \frac{3}{5}$, find D^{2} .

[Answer: 106]

See the diagram. Because the angle between the first two sides of the triangle is the complement of the triangle with measure α° , this angle must have a cosine of $\frac{4}{5}$. Thefore by the law of cosines, $D^2 = 15^2 + 7^2 - 2(15)(7)\left(\frac{4}{5}\right) = 225 + 49 - 168 = 106$.

5-3 Consider triangle ABC with point D on \overline{AC} such that AD = DB and CD = 2AD. If AB = 12 and $\cos(\angle BDA) = \frac{1}{9}$, find BC. [Answer: 21]

Let AD = DB = x. Then by the law of cosines, $12^2 = x^2 + x^2 - 2(x)(x)\left(\frac{1}{9}\right)$, so $\frac{16}{9}x^2 = 144$, making $x^2 = 91$, or x = 9. Therefore CD = 18, and $\cos(\angle BCD) = -\frac{1}{9}$, so $(BC)^2 = 9^2 + 18^2 - 2(9)(18)\left(-\frac{1}{9}\right) = 441$, so BC = 21.

Please write your answers on the answer sheet provided.

Round 6: Equations of Lines

6-1 The line y = 5x + b, where *b* is constant, passes through (3,4). What is slope of a line that passes through (-8,1) and (*b*, 10*b*)? [Answer: 37]

Setting 4 = 5(3) + b yields b = -11. Then the slope between (-8,1) and (-11, -110) is $\frac{1-(-110)}{-8-(-11)} = \frac{111}{3} = 37$.

6-2 The line 3x - 5y = -10 is reflected about the line y = x to produce the function g(x), and the two lines intersect at point P. The linear function h(x) is perpendicular to g(x) and intersects g(x) at P. Find h(-10). [Answer: 14]

Reflecting a line across y = x creates a function with the *x* and *y* coordinates from the original function reversed, and the two functions intersect at a point on y = x. This point can be found setting 3x - 5x = -10, so x = 5 and P = (5,5). The reflected line therefore has the equation 3y - 5x = -10, and so g(x) has a slope of $\frac{5}{3}$. Therefore $h(x) = -\frac{3}{5}(x-5) + 5$, and $h(-10) = -\frac{3}{5}(-10-5) + 5 = 14$.

6-3 Two linear functions, $f(x) = m_1 x + b_1$ and $g(x) = m_2 x + b_2$, intersect at (3,6). If $m_1 > 0, m_2 = -\frac{3}{2}m_1$, and the triangle formed by f(x), g(x), and the *x*-axis has an area of 37.5 square units, then $b_2 = \frac{p}{q}$ where *p* and *q* are positive integers with no common factors greater than 1. Find p + q. [Answer: 53]

Let x_1 be the length of the base of the triangle to the left of x = 3 and let x_2 be the length of the base to the right of x = 3. Then $\frac{6}{x_1} = m_1$ and $m_2 = -\frac{6}{x_2} = -\frac{3}{2}m_1 = -\frac{3}{2}\left(\frac{6}{x_1}\right)$. This yields $x_1 = \frac{3}{2}x_2$ This means $\frac{1}{2}(6)\left(x_2 + \frac{3}{2}x_2\right) = 37.5$, or $\frac{5}{2}x_2 = 12.5$, making $x_2 = 5$. This means $g(x) = -\frac{6}{5}x + b_2$, and since g(x) contains the point (3,6), we have $6 = -\frac{6}{5}(3) + b_2$, making $b_2 = \frac{48}{5}$, and therefore the desired value is 48 + 5 = 53.

FAIRFIELD COUNTY MATH LEAGUE 2024-2025 Match 2 Team Round

Please write your answers on the answer sheet provided.

1-1 Let the set *P* be the set of the first 10 prime numbers. Let the set *N* be a set of ten positive integers with the property that for every element *p* in *P*, there is an element *n* in *N* such that the element *n* is the smallest positive number with exactly *p* factors. Find the median of the elements of *N*. [Answer: 2560]

Note that $P = \{2,3,5,7,11,13,17,19,23,29\}$. For every element *p* in *P*, there is an element 2^{p-1} in *N*. That means the median of the element of *N* is the arithmetic mean of 2^{11-1} and 2^{13-1} , or $\frac{1}{2}(1024 + 4096) = \frac{1}{2}(5120) = 2560$.

1-2 What is the largest positive integer value c < 10000 such that the quadratic $x^2 - 2025x + c$ is factorable into two binomials with integer coefficients? [Answer: 8084]

Note that *c* must be the product of two numbers that add to 2025. We see that 5 * 2020 = 10100, which is greater than 10000, so testing 4 * 2021, we get 8084, which is the desired quantity.

1-3 In the figure shown (not necessarily drawn to scale) all angles are right angles. BC = 3, FG = 2, GH = 10, and CD = DE. If the figure has a perimeter of 66 units and an area of 127 square units, then $EF = \frac{a}{b}$ where *a* and *b* are positive integers with no common factors greater than 1. Find a + b. [Answer: 13]

Let CD = DE = x and EF = y. This makes AB = 10 + x - y and AH = x + 5. The perimeter is therefore 10 + x - y + 3 + x + x + y + 2 + 10 + x + 5 = 30 + 4x, so 30 + 4x = 66 and therefore x = 9. The area is therefore $(14)(19 - y) - 9^2 - 2(9 - y) = 266 - 14y - 81 - 18 + 2y$, or 167 - 12y. Setting this equal to 127 yields $y = \frac{40}{12} = \frac{10}{3}$, making the desired quantity 10 + 3 = 13.

1-4 The inequality $a \le |x - b| \le c$, where *a*, *b*, and *c* are real numbers, has the solution set $[x_1, x_2] \cup [x_3, x_4]$. The inequality $|2y - 5| \le 7$ has solution set $[y_1, y_2]$. If $y_1 + x_2 + x_4 = x_1 + x_3 + y_2$, $x_1 = -\frac{10}{3}$, and $x_3 = \frac{9}{2}$, then $b = \frac{p}{q}$ where *p* and *q* are positive integers with no common factors greater than 1. Find p + q. [Answer: 10]

Rearranging the equation yields $y_2 - y_1 = x_2 - x_1 + x_4 - x_3$. Since y_1 and y_2 are the endpoints of the solution set to $\left|y - \frac{5}{2}\right| \le \frac{7}{2}$, it follows that $y_2 - y_1 = 7$. Therefore $x_2 - x_1 = x_4 - x_3 = \frac{7}{2}$, and $x_2 = -\frac{10}{3} + \frac{7}{2} = \frac{1}{6}$. This makes $b = \frac{1}{2}\left(\frac{1}{6} + \frac{9}{2}\right) = \frac{1}{2}\left(\frac{14}{3}\right) = \frac{7}{3}$, making the desired quantity 7 + 3 = 10.

1-5 Consider triangles *ABC* and *DEF* which have equal areas. AB < AC < DE < DF, and the four values form an arithmetic sequence. If $\frac{\sin(D)}{\sin(A)} = \frac{2}{5}$, *AB* is an integer, and *DF* < 2024, find the largest possible value of *AB*. [Answer: 1011]

Let AB = x. This makes AC = x + a, DE = x + 2a, and DF = x + 3a. We then have $\frac{1}{2}(x)(x + a)\sin(A) = \frac{1}{2}(x + 2a)(x + 3a)\sin(D)$. Then $\frac{\sin(D)}{\sin(A)} = \frac{x(x+a)}{(x+2a)(x+3a)} = \frac{2}{5}$. This means $5x^2 + 5ax = 2x^2 + 10ax + 12a^2$, or $3x^2 - 5ax - 12a^2 = 0$. This factors into (x - 3a)(3x + 4a) = 0. The solution $x = -\frac{4}{3}a$ is extraneous as it means AB < 0. Therefore x = 3a and DF = 2x. Setting 2x < 2024 means x < 1012, and the largest possible value of x is 1011.

1-6 A linear function f(x) passes through the center of a circle with equation $(x - 8)^2 + (y - 21)^2 = 289$ and intersects the circle at its *y*-intercept. If f(x) has an *x* –intercept of (a, 0) where a > 0, then $a = \frac{p}{q}$ where *p* and *q* are positive integers with no common factors greater than 1. Find p + q. [Answer: 101]

The radius of the circle is 17, and the line f(x) intersects the circle at a point (0, k). Since the center of the circle is (8,21), then k must satisfy the equation $8^2 + (21 - k)^2 = 17^2$. This means $(21 - k)^2 = 15^2$, so k = 6 or k = 36. The value k = 6 is extraneous since f(x) would have a positive slope and its x-intercept would be negative. Therefore f(x) contains the points (8,21) and (0,36) and has the equation $g(x) = -\frac{15}{8}(x-8) + 21$. Solving $-\frac{15}{8}(a-8) + 21 = 0$ yields $a = \frac{96}{5}$, making the desired quantity 96 + 5 = 101.