Please write your answers on the answer sheet provided.

Round 1: Percentages

1-1 A number x is decreased by 20% to make the number y. Then y is increased by $66\frac{2}{3}$ % of 225% of itself. If this produces a final value of 2024, what is the value of x? [Answer: 1012]

From the start we have y = .8x, and then $y + \left(\frac{2}{3}\right)\frac{9}{4}y = y + \frac{3}{2}y = \frac{5}{2}y = 2024$. Since $y = .8x, \frac{5}{2}(.8x) = 2x = 2024$, so x = 1012.

1-2 Crazy Jean's Doinkatorium is having a clearance sale: buy two doinks, get the more expensive one for 40% off and the less expensive one for 60% off. Marius finds a green doink he wants which is marked \$80, but is torn for his second doink between a spotted one which is \$*a* and a striped one which is \$*b*. Marius notices he would save twice as much total money if he chose the spotted doink. If *a* and *b* are integers such that b < 80 < a, find the smallest possible value of *b*. [Answer: 14]

From the problem, we have .4a + .6(80) = 2(.4(80) + .6b), or .4a + 48 = 64 + 1.2b, which simplifies to .4a - 1.2b = 16, or a - 3b = 40. This gives a = 3b + 40 > 80, so the smallest possible value of b is 14.

1-3 Consider the rational number $p = \frac{20}{d}$, where d is a positive integer greater than 20 and less than 100. Increasing the 20 in numerator of p by d% and the d in the denominator of p by 20% increases the value of p by n% where n is a positive integer. Find the sum of the smallest and largest possible values of d. [Answer: 124]

Setting up
$$\frac{20 + \frac{d}{100}(20)}{d + \frac{20}{100}(d)} = \left(1 + \frac{n}{100}\right)\frac{20}{d}$$
, we can simplify the expression on the left to $\frac{20 + \frac{d}{5}}{\frac{6}{5}d} = \frac{100 + d}{6d}$.

Multiplying both sides by 6d yields $100 + d = 120 + \frac{6}{5}n$. Rearranging this equation gives 5d - 6n = 100. The lowest value of d that produces a positive integer value of n is d = 26, giving (26,5) as an ordered pair. Continuing to increment d by 6 until reaching the largest value less than 100 yields d = 98 as part of the ordered pair (98,65), making the desired quantity 26 + 98 = 124.

Please write your answers on the answer sheet provided.

Round 2: Solving Equations

2-1 Solve for x: $\sqrt{1 + 3(2 - (5 - 4(1 + 2x)))} = 10.$ [Answer: 4]

Squaring both sides and simplifying the left hand side yields 4 + 24x = 100, which is solved to yield x = 4.

2-2 The equation $\frac{1}{x} + \frac{2}{3} = m - 8$, where *m* is a constant, has no solutions for *x* when m = p and a solution of $x = \frac{3}{44}$ when m = q. Find p + q. [Answer: 32]

Multiplying each term by 3x yields 3 + 2x = 3x(m-8). This has no solutions if $m - 8 = \frac{2}{3}$, so $p = \frac{26}{3}$. Letting $x = \frac{3}{44}$ yields $3 + \frac{6}{44} = \frac{9}{44}(q-8)$, or 132 + 6 = 9(q-8), yielding $q = 8 + \frac{138}{9} = \frac{70}{3}$. This makes the desired quantity $\frac{26}{3} + \frac{70}{3} = \frac{96}{3} = 32$.

2-3 If *a* and *b* are positive constants such that the equation ax + 21 = b(3x + a) has infinite solutions for *x*, find $(a + b)^2$. [Answer: 112]

Setting ax = 3bx, making a = 3b, and ab = 21 gives a system that can be solved multiple ways. One method is to set $(3b)b = 3b^2 = 21$, so $b^2 = 7$ and $a^2 = 9b^2 = 63$, making $(a + b)^2 = a^2 + 2ab + b^2 = 63 + 2(21) + 7 = 112$.

Please write your answers on the answer sheet provided.

Round 3: Triangles and Quadrilaterals

3-1 An equilateral triangle has a perimeter of k centimeters and an interior angle measure of $(3k - 21)^\circ$. What is the length of one side of the triangle in centimeters? [Answer: 9]

Setting up 3k - 21 = 60 yields k = 27, making the desired quantity $\frac{27}{3} = 9$.

3-2 If an equilateral triangle has the same perimeter as an isosceles right triangle with area 18, then the area of the equilateral triangle is $a\sqrt{b} + c\sqrt{d}$ where *a*, *b*, *c*, and *d* are positive integers and *b* and *d* have no perfect square factors greater than 1. Find a + b + c + d. [Answer: 19]

An isosceles right triangle with legs of length x would have area $\frac{1}{2}x^2$, so setting this equal to 18 yields x = 6. The perimeter of this isosceles right triangle would be $6 + 6 + 6\sqrt{2} = 12 + 6\sqrt{2}$, making each side of the equilateral triangle of length $4 + 2\sqrt{2}$. Since the area of an equilateral triangle with side length l is $\left(\frac{l}{2}\right)\left(\frac{l}{2}\sqrt{3}\right)$, this makes the area $\left(2 + \sqrt{2}\right)\left(2 + \sqrt{2}\right)\left(\sqrt{3}\right) = 6\sqrt{3} + 4\sqrt{6}$, making the desired quantity 6 + 3 + 4 + 6 = 19.

3-3 Consider kite ABCD where AB = BC = 30 and $m \angle A = m \angle D = m \angle C$. If the difference between the measures of the largest angle in the kite and the smallest angle in the kite is 40°, then the sum of all possible values of AC is $a + b\sqrt{c}$ where a, b, and c are positive integers and c has no perfect square factors greater than 1. Find a + b + c. [Answer: 63]

If the angle measures in degrees are x, x, x, and x - 40, this means 4x - 40 = 360, making three of the angles have measures of 100° and $m \angle B = 60°$. This means that $m \angle ABD = m \angle DBC = 30°$, and so AC = 2(15) = 30. If the angle measures are x, x, x, and x + 40, this means that 4x + 40 = 360, making three of the angles have measures of 80° and $m \angle B = 120°$. This means that $m \angle ABD = m \angle DBC = 60°$, and so $AC = 2(15\sqrt{3}) = 30\sqrt{3}$. This means the sum of the two possible lengths is $30 + 30\sqrt{3}$, making the desired quantity 30 + 30 + 3 = 63.

Please write your answers on the answer sheet provided.

Round 4: Systems of Equations

4-1 If the ordered pair (a, b) solves the system $\begin{cases} 4x + 6y = 51 \\ y = 5x \end{cases}$, find a + b. [Answer: 9]

Substituting y = 5x into the first equation yields 4x + 6(5x) = 34x = 51, making $x = \frac{3}{2}$. Consequently $y = 5\left(\frac{3}{2}\right) = \frac{15}{2}$, making the desired quantity $\frac{3}{2} + \frac{15}{2} = 9$.

4-2 If the system $\begin{cases} ax + by = 18\\ 7x - 3y = a - 5 \end{cases}$ where *a* and *b* are constants has infinite solutions for (x, y) and b > 0, then $b = \frac{p}{q}$ where *p* and *q* are positive integers with no common factors greater than 1. Find p + q. [Answer: 34]

Since the system must have infinite solutions, the equation $\frac{a}{7} = \frac{18}{a-5}$ must hold. This produces the equation $a^2 - 5a - 126 = 0$, which has solutions of a = 14 and a = -9. The value a = 14 would mean b = -6, but since b > 0, we have it that a = -9. Therefore $\frac{-9}{7} = \frac{b}{-3}$, making $b = \frac{27}{7}$, and thus the desired quantity is 27 + 7 = 34.

4-3 The system $\begin{cases} \frac{5}{x+y} + \frac{3}{x-y} = \frac{x+y}{x-y}, \text{ where } A \text{ is a constant, has solutions } (x_1, y_1) \text{ and } (x_2, y_2) \text{ where } x_1 > x_2. \text{ If } \\ 4x - y = A \end{cases}$ $x_1 + x_2 = 12, \text{ then } y_1 = \frac{a\sqrt{b}-c}{d} \text{ where } a, c, \text{ and } d \text{ are relatively prime positive integers and } b \text{ is a positive integer with no perfect square factors greater than } 1. \text{ Find } a + b + c + d.$ [Answer: 58]

Combining the rational terms on the left side of the first equation yields $\frac{8x-2y}{(x+y)(x-y)} = \frac{x+y}{x-y}$, or $8x - 2y = (x + y)^2$. We can substitute from the second equation to get $2A = (x + y)^2$, which means $x + y = \pm\sqrt{2A}$. Adding this to the second equation yields $5x = A \pm \sqrt{2A}$, so the two values of x that solve the system are $x_1 = \frac{A+\sqrt{2A}}{5}$ and $x_2 = \frac{A-\sqrt{2A}}{5}$. The sum of these two values is $\frac{2}{5}A = 12$, so A = 30. This makes $x_1 = \frac{30+\sqrt{60}}{5}$, and since $y_1 = 4x_1 - 30$, we have $y_1 = \frac{120+4\sqrt{60}-150}{5} = \frac{8\sqrt{15}-30}{5}$, and thus our desired quantity is 8 + 15 + 30 + 5 = 58.

Please write your answers on the answer sheet provided.

Round 5: Right Triangles

5-1 A spot on flat ground 2024 feet from the base of a skyscraper has an angle of elevation to the top of the skyscraper with a tangent of .75. What is the distance in feet from the spot on the ground to the top of the skyscraper?[Answer: 2530]

Since the tangent of the angle is $\frac{3}{4} = \frac{\text{opposite}}{\text{adjacent}}$, then the cosine of the angle is $\frac{4}{5} = \frac{2024}{x}$. This makes the desired quantity $\frac{5}{4}(2024) = 2530$.

5-2 Right triangle *TRI* has right angle *R*. If *TI* and *RI* are integers that are 5 units apart and $0 < \cot(T) < 1$, find the smallest possible value of *TI*. [Answer: 18]

This could be solved by inspection by testing possible hypotenuse lengths. For example, letting TI = 10 makes RI = 5 and $TR = \sqrt{75}$ which is greater than 5, making $\cot(T) > 1$. Continuing to increase the value of TI leads to the smallest possible value of 18.

More systematically, let TI = a, RT = b, and RI = a - 5. Then $b^2 + (a - 5)^2 = a^2$, so $b^2 = 10a - 25$. Then $\cot(T) = \frac{RT}{RI} < 1$, so $b^2 < (a - 5)^2$. Therefore $10a - 25 < (a - 5)^2$, which yields $0 < a^2 - 20a + 50$, or $50 < (a - 10)^2$. Therefore the smallest possible integer value of *a* is 18.

5-3 Consider right triangle *ABC* with right angle *B* and point *D* on \overline{AC} and point *E* be on \overline{AB} such that $\overline{BC} || \overline{DE}$. If $\tan(\angle CAB) = \frac{3}{4} \tan(\angle DBA)$ and $\cos(\angle DBA) = \frac{2}{5}$, find the least possible integer value of *AB* such $(BC)^2$ is an integer. [Answer: 8]

We have $\frac{DE}{AE} = \frac{3DE}{4BE}$, so $BE = \frac{3}{4}AE$. Let BE = 3k and AE = 4k. We also have $\frac{BE}{BD} = \frac{2}{5}$, so $BD = \frac{15}{2}k$. By Pythagorean theorem, $DE = \sqrt{\left(\frac{15}{2}k\right)^2 - (3k)^2} = \frac{3}{2}\sqrt{21}k$. Then by similarity $\frac{BC}{AB} = \frac{DE}{AE}$, so $BC = \frac{21\sqrt{21}}{8}k$. Now substituting $k = \frac{AB}{7}$, we have $BC = \frac{3\sqrt{21}}{8}AB$. Therefore, the least possible integer value of AB such that $(BC)^2$ is an integer is 8.

Please write your answers on the answer sheet provided.

Round 6: Coordinate Geometry

6-1 If the graph of f(x) is the perpendicular bisector of a line segment with endpoints (1,6) and (2,3), what is f(27)?
[Answer: 13]

The segment has slope -3 and midpoint $\left(\frac{3}{2}, \frac{9}{2}\right)$, making the equation of the perpendicular bisector $f(x) = \frac{1}{3}\left(x - \frac{3}{2}\right) + \frac{9}{2}$. Therefore $f(27) = \frac{1}{3}\left(27 - \frac{3}{2}\right) + \frac{9}{2} = \frac{1}{3}\left(\frac{51}{2}\right) + \frac{9}{2} = 13$.

6-2 Point *A* has coordinates (j, k), and Point *A* is rotated 90° counterclockwise to make point *B*. If the midpoint of *A* and *B* is $\left(\frac{\sqrt{3}}{2}, 5\sqrt{3}\right)$, find the value of $j^2 - k^2$. [Answer: 30]

The coordinates of *B* will be (-k, j). The midpoint of *A* and *B* would be $\left(\frac{j-k}{2}, \frac{j+k}{2}\right)$. This means that $j - k = \sqrt{3}$ and $j + k = 10\sqrt{3}$, making the desired quantity $(j + k)(j - k) = (\sqrt{3})(10\sqrt{3}) = 30$.

6-3 Circles with equations $(x - 5)^2 + (y - 9)^2 = 9$ and $(x + 1)^2 + (y - 1)^2 = 64$ intersect at points *P* and *Q*. $PQ = \frac{a\sqrt{b}}{c}$ where *a* and *c* are positive integers with no common factors greater than 1 and *b* is a positive integer with no perfect square factors greater than 1. Find a + b + c. [Answer: 12]

The distance between the centers of the circles is 10 units, so one way to solve this is to let k be equal to half the distance PQ, then solving $\sqrt{64 - k^2} + \sqrt{9 - k^2} = 10$. Subtracting the second radical and squaring both sides yields $64 - k^2 = 100 - 20\sqrt{9 - k^2} + 9 - k^2$, simplifying to $-45 = -20\sqrt{9 - k^2}$. This yields $9 - k^2 = \frac{81}{16}$, yielding $k^2 = \frac{63}{16}$, making $k = \frac{3\sqrt{7}}{4}$. Finally $PQ = 2k = \frac{3\sqrt{7}}{2}$, making the desired quantity 3 + 7 + 2 = 12.

FAIRFIELD COUNTY MATH LEAGUE 2024–2025 Match 1 Team Round

Please write your answers on the answer sheet provided.

The positive integer k has the properties that reducing k by 20% produces an even integer, reducing k by 12.5% produces an odd integer, and while k is not a multiple of 9, increasing k by k% does produce a multiple of 9. Find the least possible value of k.
 [Answer: 440]

We know k is divisible by 5 by the first descriptor, and we also know k is divisible by 8 with no other even factors from the second descriptor. This means k = 40n where n is an odd integer but not a multiple of 9. Increasing 40n by (40n)% yields $40n \left(1 + \frac{40n}{100}\right) = 8n(5 + 2n)$. This is a multiple of 9 when n = 2, but n cannot be odd, so the first odd value of n that produces a multiple of 9 (where n is not a multiple of 9) is n = 11 to make (88)(27). This makes the desired value of k = 40(11) = 440.

2. How many ordered pairs (x, y), where x and y are positive integers less than 100, solve the equation $5 + \frac{3y-42}{x-2y} = 2 - \frac{2x}{x-2y}$? [Answer: 19]

First note that $x \neq 2y$ due to the expression in the denominator. Multiplying every term by x - 2y yields 5x - 10y + 3y - 42 = 2x - 4y - 2x, or 5x - 3y = 42. Note that (9,1) is a valid ordered pair. Incrementing x by 3 and y by 5 yields (12,6), but this contradicts the domain restriction of $x \neq 2y$, so that solution is extraneous. The value of y can be further incremented by 5 a total of 18 times before exceeding 100, making a total of 19 ordered pairs.

3. Consider parallelogram *FCML*, with FC = ML = 10. The altitude from vertex *F* intersects \overline{LM} at point *P* and the altitude from vertex *M* intersects \overline{FL} at point *Q*. If the parallelogram has an area of 50 and $MQ = \frac{4}{3}FL$, then $(LP)^2 = \frac{a}{b}$ where *a* and *b* are positive integers with no common factors greater than 1. Find a + b. [Answer: 27]

Since the area of the parallelogram is (FP)(ML), we have FP = 5. Also, since the area of the parallelogram is (MQ)(FL), we have $\frac{4}{3}(FL)^2 = 50$, making $(FL)^2 = \frac{75}{2}$. Since $(FL)^2 = (LP)^2 + (FP)^2$, we have $(LP)^2 = \frac{75}{2} - 25 = \frac{25}{2}$, making the desired quantity 25 + 2 = 27.

4. If the ordered pair (a, b) solves the system $\begin{cases} \frac{2}{x} + \frac{4}{y} = 27\\ 3x + 6y = 10 \end{cases}$, find the value of $\frac{a}{b} + \frac{b}{a}$. [Answer: 20]

Multiplying the corresponding sides of the system together yields $6 + \frac{12x}{y} + \frac{12y}{x} + 24 = 270$. Therefore $30 + 12\left(\frac{x}{y} + \frac{y}{x}\right) = 270$, and therefore $\frac{x}{y} + \frac{y}{x} = 20$.

5. A right triangle with area 12 has legs whose lengths sum to 13. The length of the altitude from the vertex of the right angle to the hypotenuse is $\frac{p}{q}$ where p and q are positive integers with no common factors greater than 1. Find p + q. [Answer: 35]

Let the lengths of the triangle be *a* and *b*. Then a + b = 13, so $a^2 + 2ab + b^2 = 169$. Since the area of the triangle is $\frac{1}{2}ab = 12$, this means that 2ab = 48, so $a^2 + b^2 = 121$, so the hypotenuse has length 11. If *x* is the length of the altitude from the vertex to the hypotenuse, then $\frac{1}{2}(11)(x) = 12$, so $x = \frac{24}{11}$, making the desired quantity 24 + 11 = 35.

6. Point *P* on the line y = 5x is reflected across y = x to a point *P'* on the line $y = \frac{1}{5}x$. If the distance from *P* to *P'* is 8 units, find the square of the distance from the origin to *P*. [Answer: 52]

Consider the point A = (1,5) on the line y = 5x. The reflection of this point over y = x is A' = (5,1). The distance between A and A' is $\sqrt{(1-5)^2 + (5-1)^2} = \sqrt{32} = 4\sqrt{2}$, and the distance from the origin to A is $\sqrt{26}$. The triangle formed by the origin O, A, and A' is similar to the triangle formed by O, P, and P'. Therefore we can set up $\frac{OA}{AA'} = \frac{OP}{PP'}$, so $\frac{\sqrt{26}}{4\sqrt{2}} = \frac{OP}{8}$. This makes $OP = \sqrt{52}$, making the desired quantity $(OP)^2 = 52$.