FAIRFIELD COUNTY MATH LEAGUE 2022-2023

Match 5

Individual Section
Please write your answers on the answer sheet provided.

Round 1: Fractions and Exponents

1-1 How many positive integers $n, 2 \leq n \leq 20$, have the property that there are $n-1$ different simplified proper fractions with a denominator of n ?
[Answer: 8]

1-2 The expression $\frac{2^{\frac{4}{3}}}{\left(16^{\frac{5}{6}}\right)\left(8^{-\frac{3}{5}}\right)}$ can be written as $\frac{\sqrt[a]{b}}{c}$, where a, b, and c are positive integers and b has no factors greater than 1 that can be written as an integer to the power of a. Find the value of $b^{\frac{a}{c}}$. [Answer: 1024]

1-3 If $\frac{2^{12 x^{2}+y^{2}\left(16^{x} x^{x-y}\right.}}{\left(8^{y}\right)^{4 x-y}}=2$ for some constants x and y, then the sum of all possible values of $\frac{81^{x}}{9^{y}}$ is $\frac{a}{b}$, where a and b are positive integers with no common factors greater than 1 . Find the value of $a-b$. [Answer: 7]

FAIRFIELD COUNTY MATH LEAGUE 2022-2023

Match 5

Individual Section
Please write your answers on the answer sheet provided.

Round 2: Rational Expressions and Equations

2-1 The rational equation $\frac{x}{x+1}+\frac{x}{x+4}=\frac{12}{x^{2}+5 x+4}$ has a valid rational solution m, but the algebra also produces an extraneous solution n. Find the value of $6 m-2 n$.
[Answer: 17]

2-2 The rational expression $\frac{1}{3+\frac{1}{x+\frac{1}{2}}}$, where x is a positive integer, is equivalent to a ratio of relatively prime integers where the denominator is exactly 60 more than the numerator. What is the value of x ?
[Answer: 14]

2-3 Shriya is mixing together a fruit juice drink. She starts with 600 milliliters of orange juice and she completely mixes in x milliliters of pineapple juice. She drinks 200 milliliters of the mixture but then adds $2 x$ milliliters of grapefruit juice. The proportion of the drink by volume now composed of pineapple juice in terms of x is $\frac{x^{2}+A x+B}{C x^{2}+D x+E}$. Find the value of $C(D+2 A)-B E$.
[Answer: 9000]

FAIRFIELD COUNTY MATH LEAGUE 2022-2023

Match 5

Individual Section
Please write your answers on the answer sheet provided.

Round 3: Circles

3-1 A circle has the property that its area in square units is exactly 8 times its circumference in units. What is the length in units of the longest chord in the circle?
[Answer: 32]

3-2 See the diagram, not necessarily drawn to scale. A circle with center P has a radius of length 9 units and two chords $\overline{A C}$ and $\overline{B D}$ which meet at point E. If $m \widehat{C D}=2 m \widehat{A B}$ and $m \angle A E D=140^{\circ}$, then the length of $\widehat{C D}$ is $\frac{a}{b} \pi$ units where a and b are positive integers with no common factors greater than 1 . Find the value of $2 a+b$. [Answer: 19]

3-3 See the diagram. Two circles are tangent to each other and are also tangent to line segments $\overline{A B}$ and $\overline{A C}$. If the smaller circle has an area of 9π and the larger circle has an area of 144π, find $A B$.
[Answer: 16]

FAIRFIELD COUNTY MATH LEAGUE 2022-2023

Match 5

Individual Section
Please write your answers on the answer sheet provided.

Round 4: Quadratic Equations \& Complex Numbers

4-1 A quadratic $f(x)$ with a leading coefficient of 1 and all rational coefficients has a zero at $x=1-$ $3 i$. What is the value of $f(10)$?
[Answer: 90]

4-2 Let f and g be quadratic polynomials. $f(z)$ has all rational coefficients and a zero of $z=3+4 i$. $g(z)$ is of the form $g(z)=z^{2}-2 i z+p+q i$ where p and q are real numbers and has a zero in common with $f(z)$ that is not $3+4 i$. $|p+q i|$ can be written as $a \sqrt{b}$ where a and b are positive integers and b has no perfect square factors greater than 1 . Find $3 a-b$.
[Answer: 40]

4-3 A quadratic function h has the form $h(z)=a z^{2}-5 i z+c$, where a and c are complex coefficients. If a and c are conjugates and $h\left(\frac{9 i}{a}\right)=0$, find the value of $|a|$.
[Answer: 6]

FAIRFIELD COUNTY MATH LEAGUE 2022-2023

Match 5

Individual Section
Please write your answers on the answer sheet provided.

Round 5: Trigonometric Equations
5-1 If $6 \cos (x)+8=12$, find $36 \sin ^{2}(x)+12$.
[Answer: 32]

5-2 Consider the equation $\sec (x)-2=2 \tan (x)-\csc (x)$ for $x \in[0,2 \pi)$. If A is the largest value of x that satisfies the equation and B is the smallest value of x that satisfies the equation, find the value of $\frac{360}{\pi}(A-B)$.
[Answer: 570]

5-3 The equation $A \cos ^{3}(x)+B \cos ^{2}(x)+C \cos (x)+D=0$, where A, B, C, and D are integers with no common factors greater than 1 and $A>0$, has the solution set $x \in\left\{\frac{\pi}{4}, \frac{\pi}{3}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{5 \pi}{3}, \frac{7 \pi}{4}\right\}$. Find the value of $A+B+C+D$.
[Answer: 1]

FAIRFIELD COUNTY MATH LEAGUE 2022-2023

Match 5

Individual Section
Please write your answers on the answer sheet provided.

Round 6: Sequences \& Series
6-1 An arithmetic sequence has the first three terms $3,7,11, \ldots$. What is the average (arithmetic mean) of the first 100 terms?
[Answer: 201]

6-2 There are two infinite geometric series with the same first term $a_{1}=48$ and common ratios r_{1} and r_{2}. For each series, the infinite sum is 12 more than five times the second term. Find the value of $\frac{1}{1-r_{1}-r_{2}}$.
[Answer: 20]

6-3 There is an arithmetic series with the first term k such that the sum of the first N terms for all $N \geq$ 1 is $k N^{2}$. Find the value of the $100^{\text {th }}$ term of the series if $k=10$.
[Answer: 1990]

FAIRFIELD COUNTY MATH LEAGUE 2022-2023

Match 5

Team Round

Please write your answers on the answer sheet provided.

1. Let n, a, and b be positive integers such that $\frac{n}{2023}=\frac{1}{a+\frac{1}{b}}$. If $n \leq 10$ and $b>1$, find the smallest possible value of a.
[Answer: 337]
2. There are two values of the constant a such that the equation $\frac{5}{a x-4}=\frac{2}{x+3}$ would have no solutions for x. The quadratic equation $M a^{2}+N a+P=0$, for relatively prime integers M, N, and P, has solutions equal to these two values of a. Find the value of $|M|+|N|+|P|$.
[Answer: 33]
3. See the diagram (not drawn to scale), which shows a circle with two chords $\overline{F M}$ and $\overline{L C}$ that intersect at point $B . \overline{F L}$ is a diameter of the circle, $F B=5$, $M B=2$, and $m \widehat{C M}=60^{\circ}$. The area of the circle is $\frac{c}{d} \pi$ where c and d are positive integers with no common factors greater than 1 . Find the value of $10 c+d$.

[Answer: 614]
4. Consider the polynomial $f(z)=z^{2}+(2-4 i) z-3-10 i$. If $z_{0}=a+b i$, where a and b are integers, has the property that $f\left(z_{0}\right)$ lies on the real axis, what is the value of $\left|f\left(z_{0}\right)\right|$? [Answer: 8]
5. There are three angles $\theta, 0 \leq \theta<\frac{\pi}{2}$, such that $\sin (5 \theta)=\cos (\theta)$. The sum of these angle measures in radians is $\frac{a}{b} \pi$ where a and b are positive integers with no common factors greater than 1 . Find $2 b-a$.
[Answer: 11]
6. Consider a sequence where $a_{0}=5, a_{1}=6, a_{2}=7$, and for $n>2, a_{n}=2 a_{n-1}-a_{n-3}$. Find the smallest value n such that $a_{n}-a_{n-1}>1000$.
[Answer: 17]
