FAIRFIELD COUNTY MATH LEAGUE 2021-2022
Match 1 Round 1
1.) $\{6,4,6\}$

Arithmetic: Percents
2.) $\{80,85,84\}$
3.) $\{15000,5000,6000\}$
1.) How many natural numbers less than 100 produce a natural number when increased by $\left\{40 \%, 25 \%, 33 \frac{1}{3} \%\right\}$ and then again by $\left\{33 \frac{1}{3} \%, 16 \frac{1}{6} \%, 15 \%\right\}$ ?
2.) One item in a store is discounted by $70 \%$ and then by an additional $20 \%$. Another item undergoes a price increase of $\{20,60,50\} \%$ and then a decrease of $x \%$. If the total percent discount on both items ends up being the same, find the value of $x$.
3.) For positive numbers $A, B$, and $C$, it is known that $A \%$ of $B$ is equal to the difference between $30 \%$ of $A$ and $40 \%$ of $B$. If $A \%$ of $C$ is $\{13,11,14\}$ and $B \%$ of $C$ is $\{6,7,9\}$, find the value of the product $A B C$.

# FAIRFIELD COUNTY MATH LEAGUE 2021-2022 

Match 1 Round 2<br>Algebra 1: Equations

1.) $\{84,98,93\}$
2.) $\{271,451,631\}$
3.) $\{126,70,30\}$
1.) If $x=4$ is the solution to the equation $\{38,52,47\} x+192=k x+8$ where $k$ is a constant, find the value of $k$.
2.) If $p$ and $q$ are positive integers such that $11 p-\{3,5,7\} q=\{2,1,4\}$, and $q<$ 1000 , find the largest possible value of $p$.
3.) If the equation $\sqrt{x^{2}+a x}=x+\{14,10,6\}$ has a positive integer solution for $x$, find the second-largest possible value of $a$.

## FAIRFIELD COUNTY MATH LEAGUE 2021-2022

Match 1 Round 3
Geometry: Triangles \& Quadrilaterals
1.) $\{120,135,150\}$
2.) $\{120,80,40\}$
3.) $\{30,36,24\}$
1.) A quadrilateral has angles whose measures in degrees form an arithmetic sequence. If the second largest angle measures $\{100,105,110\}$ degrees, what is the measure of the largest angle in degrees?
2.) A rhombus has one diagonal that is three times the length of its other diagonal and an area of $\{540,240,60\}$. What is its perimeter?
3.) An isosceles trapezoid has a height of $\{3 \sqrt{2}, 2 \sqrt{3}, 2 \sqrt{2}\}$ units and a diagonal length of $\{2 \sqrt{17}, 2 \sqrt{30}, 4 \sqrt{5}\}$ units. What is the area of the trapezoid in square units?

## FAIRFIELD COUNTY MATH LEAGUE 2021-2022

Match 1 Round 4
Algebra 2: Simultaneous
Equations
1.) $\{5,8,1\}$
2.) $\{25,36,100\}$
3.) $\{35,42,47\}$
1.) If $(p, p)$ where $p$ is a constant is the solution for $(x, y)$ to the system $\left\{\begin{array}{c}A x+2 y=\{16,21,4\} \\ 3 x-A y=\{9,19,1\}\end{array}\right.$ where $A$ is a constant, find the value of $p$.
2.) Consider the system $\left\{\begin{array}{c}\{2,3,9\} x+m y=2 m \\ (2 m+1) x+5 y=\{2 m+6,2 m+5,2 m+1\}\end{array}\right.$ where $m$ is a constant. If the system has no solutions for $(x, y)$, find the value of $4 m^{2}$.
3.) Three particular real numbers have a sum of $\{5 \sqrt{3}, 6 \sqrt{2}, 3 \sqrt{15}\}$. The sum of the three products of two of the three numbers is $\{20,15,44\}$. Find the sum of the squares of the numbers.

## FAIRFIELD COUNTY MATH LEAGUE 2021-2022

Match 1 Round 5
Precalculus: Right Triangle Trigonometry
1.) $\{16,26,52\}$
2.) $\{21,18,28\}$
3.) $\{48,60,120\}$
1.) Consider right triangle $T R I$ with right angle $R$. If $\sin (T)=T I=\left\{\frac{2}{3}, \frac{3}{4}, \frac{5}{6}\right\}$ then $T R=\frac{x \sqrt{y}}{z}$ where $x$ and $z$ have no common factors greater than 1 and $y$ has no perfect square factors greater than 1 . Find $x+y+z$.
2.) A right triangle has the property that the tangent of one of its acute angles is $\{75 \%, 80 \%, 40 \%\}$ larger than its sine. If the area of the triangle is $\{18 \sqrt{33}, 20 \sqrt{14}, 80 \sqrt{6}\}$, find the length of the hypotenuse of the triangle.
3.) In right triangle $A B C$ with right angle $C$, the sum of $\sin (A)$ and $\cos (A)$ is $\left\{\frac{2 \sqrt{3}}{3}, \frac{2 \sqrt{10}}{5}, \frac{\sqrt{42}}{6}\right\}$. If the triangle has an area of $\{4,9,5\}$ square units, find the square of the length of the hypotenuse.

FAIRFIELD COUNTY MATH LEAGUE 2021-2022

Match 1 Round 6
Miscellaneous: Coordinate
Geometry
1.) $\{13,11,9\}$
2.) $\{14,22,32\}$
3.) $\{57,22,71\}$
1.) If a particular line has an $x$-intercept of $(-1,0)$ and the line passes through $\{(10,66),(8,45),(12,52)\}$, and its equation in standard form is $A x+B y=C$ where $A, B$, and $C$ are integers with no common factors greater than 1 and $A>$ 0 , find the value of $A-B-C$.
2.) The circle with equation $(x-3)^{2}+(y+k)^{2}=r^{2}$ has a diameter with endpoints $(2,-5)$ and $(a,\{-11,-13,-15\})$. Find the value of $k-a+r^{2}$.
3.) An isosceles triangle is graphed on the coordinate plane such that its base has coordinates $\{(-3,-3),(-1,-1),(-6,-6)\}$ and $\{(-13,-13),(-9,-9),(-12,-12)\}$. Its vertex has coordinates $(p, q)$. If the triangle has area $\{10 \sqrt{7}, 8 \sqrt{3}, 6 \sqrt{10}\}$, find the value of $p q$.

## FAIRFIELD COUNTY MATH LEAGUE 2021-2022 Match 1 Team Round

1.) 458
4.) 90
2.) 7
5.) 1618
3.) 57
6.) 5
1.) How many positive integers $n$ have the property that decreasing $n$ by $25 \%$ or increasing $n$ by $20 \%$ results in an integer less than or equal to 1000 ?
2.) If the equation $\frac{a x+2}{x+1}=\frac{c x-\frac{6}{x+1}}{b x-3}$ has infinite solutions for $x$ and both $a$ and $b$ are nonzero, how many different integer pairs $(a, b)$ exist?
3.) Consider parallelogram $F C M L$ with midpoint $D$ on $\overline{F C}$. If $m \angle F=120^{\circ}, F L=$ 10 and $L D=14$, then the area of the parallelogram can be written as $a \sqrt{b}$ where $b$ has no perfect square factors larger than 1 . Find the value of $a-b$.
4.) Given the system $\left\{\begin{array}{c}A x+5 y=60 \\ \frac{5}{x}+\frac{6}{y}=2\end{array}\right.$, the set of all constants $A$ such that the system has no real solutions for $(x, y)$ is bounded below by $m$ and above by $n$, where $m$ and $n$ are positive integers. Find the value of $2 n-3 m$.
5.) In right triangle $A B C$ with larger acute angle $A$ the ratio of $\tan (A)$ to $\sin (A)$ is the square of the ratio of $\sin (A)$ to $\cos (A)$. Find the value of $1000 \sec (A)$ rounded to the nearest whole number.
6.) A line with a $y$-intercept of $(0,16)$ lies tangent to the circle $x^{2}+y^{2}=80$ in quadrant 1 . The line intersects the circle at the point $(a, b)$. Find the value of $b$.

